

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

THE IMPACT OF SOFTWARE REUSE ON THE COST OF
NAVY SONAR AND FIRE CONTROL SYSTEMS

by

Anthony M. Wilson

June 2009

 Thesis Advisor: Joseph G. San Miguel
 Second Reader: Michael W. Boudreau

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
The Impact of Software Reuse on the Cost of Navy Sonar and Fire Control Systems

6. AUTHOR(S) Anthony M. Wilson

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

One of the critical aspects in the design and sustainment of new and replacement Navy combat systems is the
development of software to run the systems in a manner that maximizes their benefit to national security. This
research examines the Navy’s acquisition of anti-submarine warfare sonar and fire control software to determine if
software reuse has been effective in lowering costs. The potential for cost avoidance exists due to the commonality of
the anti-submarine warfare mission across the surface, air, surveillance, and submarine communities. The three
categories of costs chosen for analysis are maintenance; training; and research, development, test, and evaluation
(RDT&E). Analysis focuses on the identification of trends associated with each of the costs for selected systems and
programs. Identifying trends in funding could provide evidence of the cost-effectiveness of software reuse efforts
within and across the surface, air, surveillance, and submarine communities.

15. NUMBER OF
PAGES

121

14. SUBJECT TERMS

Software reuse, reuse, ASW software, sonar, fire control, APB, ARCI

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

THE IMPACT OF SOFTWARE REUSE ON THE COST OF NAVY SONAR AND
FIRE CONTROL SYSTEMS

Anthony M. Wilson
Lieutenant, United States Navy

B.S., United States Naval Academy, 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF BUSINESS ADMINISTRATION

from the

NAVAL POSTGRADUATE SCHOOL
June 2009

Author: Anthony M. Wilson

Approved by: Joseph G. San Miguel

Thesis Advisor

Michael W. Boudreau
Second Reader

William Gates
Dean, Graduate School of Business and Public Policy

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

One of the critical aspects in the design and sustainment of new and replacement

Navy combat systems is the development of software to run the systems in a manner that

maximizes their benefit to national security. This research examines the Navy’s

acquisition of anti-submarine warfare sonar and fire control software to determine if

software reuse has been effective in lowering costs. The potential for cost avoidance

exists due to the commonality of the anti-submarine warfare mission across the surface,

air, surveillance, and submarine communities. The three categories of costs chosen for

analysis are maintenance; training; and research, development, test, and evaluation

(RDT&E). Analysis focuses on the identification of trends associated with each of the

costs for selected systems and programs. Identifying trends in funding could provide

evidence of the cost-effectiveness of software reuse efforts within and across the surface,

air, surveillance, and submarine communities.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PURPOSE OF THE STUDY ..1
B. THE CHALLENGE ..1
C. RESEARCH OBJECTIVES...4
D. THESIS ORGANIZATION..5

1. Chapter II—Background ..5
2. Chapter III—Methodology ...6
3. Chapter IV—Results ...6
4. Chapter V—Summary, Conclusions, and Recommendations.........7

II. BACKGROUND ..9
A. ACOUSTIC RAPID COTS INSERTION ...9

1. Technology Insertions..9
2. Advanced Processing Builds ...10

a. Advanced Capability Builds..13
b. Advanced Processing Builds and Software Reuse.................14
c. Funding ...14

3. Commonality ..14
4. Summary...16

B. SOFTWARE REUSE CONSIDERATIONS...17
1. Definition of Reuse...18
2. Reusable Assets ..18
3. Summary...20

C. SOFTWARE REUSE COSTS AND BENEFITS..21
1. Types of Reuse..24

a. Black-box Reuse..25
b. White-box Reuse ...25
c. Commercial-off-the-Shelf (COTS) ...26

2. Planned Reuse ..28
a. Software Product Lines...29
b. Software Libraries...32
c. Department of Defense Communities of Interest (COI)........34

3. Opportunistic Reuse ..35
4. Organizational Issues...36
5. Benefits of Reuse ..39

a. Cost Avoidance..40
b. Quality ...41
c. Development Schedule..42

6. Summary...42

III. METHODOLOGY ..45
A. GENERAL APPROACH ..45
B. SOFTWARE DEVELOPMENT LABOR COSTS.....................................45

 viii

C. SONAR AND FIRE CONTROL SYSTEMS SELECTED FOR
ANALYSIS ...46
1. Relationship to Software Reuse ..48

a. ETS and Software Support Costs ...49
b. Training...49

2. Analysis ...49
a. Trend Analysis of ETS and Software Support Costs50
b. Trend Analysis of Training Costs...50
c. Annual Percentage Change..50

3. Summary...51
D. BUDGET LINE ITEMS SELECTED FOR ANALYSIS...........................51

1. Individual Budget Items Selected...52
2. Relationship to Software Reuse ..56
3. Analysis ...56

a. Trend Analysis...56
b. Annual Percentage Change..57

4. Total Sonar and Fire Control Costs ...57
5. Summary...58

IV. RESULTS FROM ANALYSIS OF THE DATA...59
A. SOFTWARE RELATED WAGES ..59
B. MAINTENANCE COSTS...62

1. AN/BQQ–10 Sonar System ...62
2. AN/SQQ–89 Surface Combat System ..64
3. AN/BYG–1 Combat Control System..65
4. Summary...67

C. TRAINING COSTS...67
1. AN/BQQ–10 Sonar System ...68
2. AN/SQQ–89 Combat Control System..71
3. AN/BYG–1 Combat Control System..74
4. Summary...76

D. RESEARCH, DEVELOPMENT, TEST, AND EVALUATION
COSTS ..76
1. Trend Analysis of RDT&E Costs ...78

a. Program Element 0603561N/Advanced Submarine
System Development ...78

b. Program Element 0603553N/Surface ASW...........................79
c. Program Element 0604503N/Submarine System

Equipment Development...81
d. Program Element 0604562N/Submarine Tactical Warfare

System—Project Unit 0236/SSN Comb Cont Sys
Imprvmnt (ENG) ...83

e. Program Element 0604261N/Acoustic Search Sensors—
Project Unit 0480/ASW Sensors & Processors84

 ix

f. Program Element 0205620N/Surface ASW Combat
System Integration and Program Element
0205620N/Surface ASW System Improvement......................86

g. Total Software Related Costs for the Selected Programs87
2. Total ASW Sonar and Fire Control Related RDT&E Costs88
3. Summary...90

V. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS91
A. SUMMARY OF RESULTS ..91
B. CONCLUSIONS ..93
C. RECOMMENDATIONS...94

LIST OF REFERENCES..97

INITIAL DISTRIBUTION LIST ...101

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Software Product Line Essential Activities (From Clements et al., 2006)30
Figure 2. National Mean Hourly Wage for Computer Programmers from the Bureau

of Labor Statistics Occupational Employment Statistics (Adjusted to 2009
dollars using the Consumer Price Index) vs. Year...60

Figure 3. National Mean Hourly Wage for Computer Software Engineers -
Applications from the Bureau of Labor Statistics Occupational
Employment Statistics (Adjusted to 2009 dollars using the Consumer
Price Index) vs. Year..60

Figure 4. National Mean Hourly Wage for Computer Software Engineers - Systems
from the Bureau of Labor Statistics Occupational Employment Statistics
(Adjusted to 2009 dollars using the Consumer Price Index) vs. Year.............61

Figure 5. AN/BQQ–10 Software Support and Engineering and Technical Services
Cost per Unit (FY08$) vs. Fiscal Year ..63

Figure 6. AN/SQQ–89 Software Support and Engineering and Technical Services
Cost per Unit (FY08$) vs. Fiscal Year ..64

Figure 7. AN/BYG–1 Software Support and Engineering and Technical Services
Cost per Unit (FY08$) vs. Fiscal Year ..66

Figure 8. AN/BQQ–10 Training Costs per Unit (FY08$) vs. Fiscal Year......................69
Figure 9. AN/BQQ–10 Training Costs per Individual Trained (FY08$) vs. Fiscal

Year..70
Figure 10. AN/SQQ–89 Training Costs per Unit (FY08$) vs. Fiscal Year72
Figure 11. AN/SQQ–89 Training Costs per Individual Trained (FY08$) vs. Fiscal

Year..73
Figure 12. AN/BYG–1 Training Costs per Unit (FY08$) vs. Fiscal Year........................74
Figure 13. AN/BYG–1 Training Costs per Individual Trained (FY08$) vs. Fiscal

Year..75
Figure 14. Program Element 0603561N/Advanced Submarine System

Development—Project Unit 0223/Sub Combat System Improvement
(ADV) RDT&E Costs (FY09$) per Fiscal Year..78

Figure 15. Program Element 0603553N/Surface ASW—Project Unit 1704/Undersea
Warfare RDT&E Costs (FY09$) per Fiscal Year..80

Figure 16. Program Element 0604503N/Submarine System Equipment
Development—Project Unit 0219/Sub Sonar Improvement (ENG)
RDT&E Costs (FY09$) per Fiscal Year..82

Figure 17. Program Element 0604562N/Submarine Tactical Warfare System—
Project Unit 0236/SSN Comb Cont Sys Imprvmnt (ENG) RDT&E Costs
(FY09$) per Fiscal Year ..83

Figure 18. Program Element 0604261N/Acoustic Search Sensors—Project Unit
0480/ASW Sensors & Processors RDT&E Costs (FY09$) per Fiscal Year ...85

 xii

Figure 19. Program Element 0205620N/Surface ASW Combat System Integration—
Project Unit 0896/AN/SQQ–89 Modification and Budget Activity (BA)—
7 and Program Element 0205620N/Surface ASW Combat System
Integration—Project Unit 1916/Surface ASW System Improvement
RDT&E Costs (FY09$) per Fiscal Year..86

Figure 20. Total Software Related RDT&E Costs (FY09$) per Fiscal Year....................88

 xiii

LIST OF TABLES

Table 1. National Mean Hourly Wages for Software Development Jobs from the
Bureau of Labor Statistics (Wages in 2009 dollars are in parentheses)61

Table 2. AN/BQQ–10 Software Support and Engineering and Technical Services
Cost per Unit (FY08$) Annual Percentage Change...63

Table 3. AN/SQQ–89 Software Support and Engineering and Technical Services
Cost per Unit (FY08$) Annual Percentage Change...65

Table 4. AN/BYG–1 Software Support and Engineering and Technical Services
Cost per Unit (FY08$) Annual Percentage Change...66

Table 5. AN/BQQ–10 Training Costs per Unit (FY08$) Annual Percentage Change ..69
Table 6. AN/BQQ–10 Training Costs per Individual Trained (FY08$) Annual

Percentage Change...70
Table 7. AN/SQQ–89 Training Costs per Unit (FY08$) Annual Percentage Change ..72
Table 8. AN/SQQ–89 Training Costs per Individual Trained (FY08$) Annual

Percentage Change...73
Table 9. AN/BYG–1 Training Costs per Unit (FY08$) Annual Percentage Change75
Table 10. AN/BYG–1 Training Costs per Individual Trained (FY08$) Annual

Percentage Change...75
Table 11. Program Element 0603561N/Advanced Submarine System

Development—Project Unit 0223/Sub Combat System Improvement
(ADV) RDT&E Costs (FY09$) and Annual Percentage Change....................79

Table 12. Annual Costs of At-Sea Testing (FY09$) for Program Element
0603553N/Surface ASW—Project Unit 1704/Undersea Warfare and
Percent of Total Costs per Fiscal Year ..80

Table 13. Program Element 0603553N/Surface ASW—Project Unit 1704/Undersea
Warfare RDT&E Costs (FY09$) and Annual Percentage Change..................81

Table 14. Program Element 0604503N/Submarine System Equipment
Development—Project Unit 0219/Sub Sonar Improvement (ENG)
RDT&E Costs (FY09$) and Annual Percentage Change82

Table 15. Program Element 0604562N/Submarine Tactical Warfare System—
Project Unit 0236/SSN Comb Cont Sys Imprvmnt (ENG) RDT&E Costs
(FY09$) and Annual Percentage Change ..84

Table 16. Program Element 0604261N/Acoustic Search Sensors—Project Unit
0480/ASW Sensors & Processors RDT&E Costs (FY09$) and Annual
Percentage Change...85

Table 17. Program Element 0205620N/Surface ASW Combat System Integration—
Project Unit 0896/AN/SQQ–89 Modification and Budget Activity (BA)—
7 and Program Element 0205620N/Surface ASW Combat System
Integration—Project Unit 1916/Surface ASW System Improvement
RDT&E Costs (FY09$) and Annual Percentage Change87

Table 18. Total Software Related RDT&E Costs (FY09$) per Fiscal Year....................88
Table 19. Total ASW Sonar and Fire Control Related RDT&E Costs (FY09$)89

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

ACAT Acquisition Category

ACB Advanced Capability Build

APB Advanced Processing Build

ARCI Acoustic Rapid COTS Insertion

ASN Assistant Secretary of the Navy

ASW Anti-submarine warfare

BA Budget Authority

BLS Bureau of Labor Statistics

CAL Common Asset Library

CBO Congressional Budget Office

COCOMO Constructive Cost Model

COI Community of Interest

COTS Commercial off the shelf

FM&C Financial Management & Comptroller

GAO Government Accountability Office

NCCA Naval Center for Cost Analysis

NETPDTC Naval Education and Training Professional Development
Technology Center

NOA Naval Open Architecture

OAML Oceanographic and Atmospheric Master Library

RDT&E Research, development, test, and evaluation

SEI Software Engineering Institute

SLOC Source Lines of Code

SRDR Software Resource Data Report

STRG Submarine Tactical Requirements Group

TEASG Test, Evaluation, and Assessment Support Group

TI Technology Insertion

VAMOSC Visibility and Management of Operating and Support Costs

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

I am thankful to all those past and present that have provided for the defense of

our great country. Opportunities such as this would not be available without your

sacrifice. To my wife and best friend, Katie: you tolerated many sleepless nights and

supported me all the way. I love you and cannot thank you enough for all that you do. To

my advisors, Dr. Joseph San Miguel and Professor Michael Boudreau: your wisdom and

ability to keep things in perspective kept me on the right track. I would not have been

successful without your help. Finally to CAPT Charles Davis, Jim Thompson, Colleen

Cannon, Bill Johnson, and Steve Oxman: your willingness to help and contributions are

sincerely appreciated.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. PURPOSE OF THE STUDY

The purpose of this study is to evaluate whether the reuse of sonar and fire control

related software in anti-submarine warfare systems has been beneficial in reducing

associated costs of maintenance, training, and research and development. The reuse of

software is examined as an alternative to developing all aspects of a software system

from scratch for one time use. Anti-submarine warfare (ASW) software was chosen due

to the commonality of the ASW mission in the submarine, surface, aviation, and

surveillance communities. If there is a correlation between the methods in which ASW

software is developed and reused, and a reduction in the cost of developing and

maintaining ASW software systems, then there may be strong support for building

systems that increase the capacity for software reuse. The objective of this research is to

determine if actual cost savings have resulted from ASW software reuse.

B. THE CHALLENGE

The Department of Defense routinely acquires complex and advanced weapons

systems such as the Virginia Class submarine, the Littoral Combat Ship, and the Future

Combat System. To operate and run these systems, a significant investment in software

programs is usually required. The necessity to acquire these systems quickly and within

specified costs makes software development even more difficult and critical to successful

implementation. A 2004 Government Accountability Office [GAO] report estimated that

during fiscal year 2003, the Department of Defense spent close to forty percent of its

research, development, test, and evaluation (RDT&E) budget on software. This equates

to approximately $21 billion. Given the Congressional Budget Office’s estimate of a $1.7

trillion dollar deficit for 2009 (Congressional Budget Office [CBO], 2009) and increasing

pressure on the Navy budget, any cost savings on software programs should be

considered beneficial. GAO (2004) also states that a survey of software systems

developed in the 1990s illustrated that on average software systems had a 189 percent

2

cost overrun, a 222 percent schedule overrun, and delivered only 61 percent of the

anticipated capabilities. Certainly, improvements in these factors would also save costs

and help achieve mission requirements.

To counteract these trends, the Navy now emphasizes the development of

software systems using an Open Architecture and modular design. Open architecture

allows for greater “interchangeability” of software components, a lower barrier of entry

for future development by software companies, and more rapid increases in technology

(Nelson, 2007, p. 8). The concept of Naval Open Architecture (NOA) is defined as

follows in Program Executive Office—Integrated Warfare Systems 7 [PEO IWS 7]

(2007).

Naval Open Architecture (NOA) is the confluence of business and
technical practices yielding modular, interoperable systems that adhere to
open standards with published interfaces. This approach significantly
increases opportunities for innovation and competition, enables re-use of
components, facilitates rapid technology insertion, and reduces
maintenance constraints. NOA delivers increased warfighting capabilities
in a shorter time at reduced cost. (p. 2)

Anti-submarine sonar and fire control software developed within the Acoustic

Rapid COTS (commercial-off-the-shelf) Insertion (ARCI) program and Advanced

Processing Build (APB) process is an example of such an acquisition and development

strategy. The ARCI/APB program began in 1996, and has since succeeded in achieving

commonality of sonar software systems within the submarine community. Its efforts have

also led to the opportunity for sharing and reuse of software components among the air,

surface, and surveillance communities.

Three anti-submarine warfare systems were chosen to investigate the potential

effects of software reuse on maintenance and training costs. The reasons for selecting

these systems are discussed in Chapter III. The three systems are:

 AN/BQQ-10 Sonar System

 AN/BYG-1 Submarine Combat Control System

 AN/SQQ-89 Surface Combat System

3

Additionally, there are several RDT&E budget items used to investigate whether

reuse of ASW software has resulted in a decrease in funding for the development and

testing of ASW related software systems. Budget items were selected for reasons

discussed in Chapter III. The following RDT&E budget items are listed according to their

budget activity, program element number, program element name, project number and

project name.

 Budget Activity (BA)—4, Program Element 0603561N/Advanced
Submarine System Development—Project Unit 0223/Sub Combat System
Improvement (ADV)

 Budget Activity (BA)—4, Program Element 0603553N/Surface ASW—
Project Unit 1704/Undersea Warfare

 Budget Activity (BA)—5, Program Element 0604503N/Submarine
System Equipment Development—Project Unit 0219/Sub Sonar
Improvement (ENG)

 Budget Activity (BA)—5, Program Element 0604562N/Submarine
Tactical Warfare System—Project Unit 0236/SSN Comb Cont Sys
Imprvmnt (ENG)

 Budget Activity (BA)—5, Program Element 0604261N/Acoustic Search
Sensors—Project Unit 0480/ASW Sensors & Processors

 Budget Activity (BA)—7, Program Element 0205620N/Surface ASW
Combat System Integration—Project Unit 0896/AN/SQQ-89 Modification
and Budget Activity (BA)—7, Program Element 0205620N/Surface ASW
Combat System Integration—Project Unit 1916/Surface ASW System
Improvement

Cooperation, assistance, and data were provided by cost estimators, engineers,

acquisition professionals, and program managers from the Program Executive Office

(PEO) for Integrated Warfare Systems, Program Executive Office (PEO) for Submarines,

Naval Center for Cost Analysis (NCCA), Air Force Center for Cost Analysis (AFCCA),

Naval Air Systems Command (NAVAIR), Office of Naval Research (ONR), General

Dynamics (GD), Lockheed Martin Maritime Systems and Sensors Division, BAE

Systems, Joint Networking Technologies, and Advanced Acoustic Concepts (AAC).

In addition to the commonality of the ASW mission across the air, surface,

surveillance, and submarine communities, decoupling hardware and software in the

4

design of anti-submarine warfare sonar and fire control systems has permitted a greater

opportunity for reuse of software across these communities. With each program

developing updates on a regular basis, the opportunity for reuse is also accentuated.

Reuse benefits that have been documented include lower development costs and

improved quality, which should ultimately lower maintenance and support costs. Thus

there should be trends that indicate reduced RDT&E and maintenance and support costs.

Additionally, if reuse is prominent across each community, there may be a correlation

between funding profiles. By determining the trends in these associated costs, this

research should assess whether software reuse, which has been touted as means of cost

avoidance, has benefitted the Navy.

C. RESEARCH OBJECTIVES

By determining cost savings and trends in funding, this research could make the

following contributions to future and current defense software acquisitions.

 Highlight successful programs that can serve as models for other defense
acquisition programs. The techniques and efforts employed to reduce costs
could potentially be implemented in similar programs to lower acquisition
and support costs.

 Illustrate whether current practices and methods being employed to foster
the reuse of software are effective and should be continued. If current
practices are not successful, then there should be an evaluation of whether
they should continue in the same manner.

In attempting to make these contributions the following research questions were

posed.

 What type of efforts has the Navy undertaken to reuse ASW software?

 What cost data should be analyzed to best represent the potential savings
that could be realized through the reuse of ASW software?

 Has software reuse been successful in reducing the costs of developing
and maintaining ASW sonar and fire control systems?

5

D. THESIS ORGANIZATION

This thesis is organized into five chapters. Chapter I introduces the purpose of this

study. It also highlights the motivation behind the research for both the development of

sonar and fire control software and the subsequent reuse. If positive trends can be

identified, it may provide other communities with insight into how cost reduction can

occur in developing software.

1. Chapter II—Background

The information used in this chapter was gathered through an extensive literature

review of software reuse practices and interviews with personnel involved in the design,

costing, and procurement of software intensive systems. Personnel that contributed came

from a variety of organizations including;

 Program Executive Office (PEO) for Submarines, Washington, DC

 Program Executive Office (PEO) for Integrated Warfare Systems,
Washington, DC

 Naval Center for Cost Analysis (NCCA), Washington, DC

 Naval Air Systems Command (NAVAIR), Patuxent River, MD

 Air Force Center for Cost Analysis, Waltham, MA

 Joint Networking Technologies, LLC

 Advanced Acoustic Concepts, Columbia, MD

 BAE Systems, Washington, DC

 General Dynamics, Fairfax, VA

 Lockheed Martin Maritime Systems and Sensors, Manassas, VA

Chapter II begins by discussing the submarine community’s process for

developing sonar and fire control software. It continues with a discussion of how current

system design involving the separation of operations into functional components as well

as a goal towards commonality has led to greater opportunities for reuse of software

assets within the submarine, surface, air, and surveillance communities.

6

The next section defines software reuse and provides background concerning

what types of assets used in the design of software intensive systems can be reused and

which are primarily referred to when describing reuse.

The final section provides additional detail concerning the effect of software reuse

on costs as well as some of the strategic factors involved in successful reuse programs.

This includes examples of reuse practices that have been successful as well as the

constraints faced when organizations attempt to reuse software. Also included in this

section is a discussion of the potential benefits that organizations can expect when

reusing software assets.

2. Chapter III—Methodology

The Methodology Chapter describes how data were retrieved, normalized, and

analyzed. Data related to maintenance and training costs were provided by the Navy

Visibility and Management of Operating and Support Costs (VAMOSC) database. This

database is maintained by the Naval Center for Cost Analysis (NCCA).

RDT&E budget data were obtained from the Assistant Secretary of the Navy

(ASN) Financial Management & Comptroller (FM&C) website,

http://www.finance.hq.navy.mil/FMC/. The data were normalized using the RDT&E

(purchase) appropriation from the Naval Center for Cost Analysis (NCCA) inflation

calculator (February 2009 edition).

Data related to the wages for software engineers and computer programmers was

obtained from the Occupational Employment Statistics (OES) section of Bureau of Labor

Statistics (BLS) website http://www.bls.gov/. The data were normalized using the

Consumer Price Index (CPI) calculator.

3. Chapter IV—Results

The Results Chapter contains descriptions of the outputs from analysis conducted

in the Methodology Chapter. Trend analysis of the cost data is displayed graphically and

within tables, and is accompanied by a narrative to describe the results and any unusual

circumstances. Possible reasons for the various trends identified are also included in the

analysis and narrative.

7

4. Chapter V—Summary, Conclusions, and Recommendations

The Summary of Results section of Chapter V provides an overview of the results

obtained in Chapter IV. It gives a general description of the trends exhibited by the

various costs that were analyzed.

In the Conclusions section, judgments were made concerning the relationship of

the data analyzed to software reuse cost avoidance.

The Recommendations section provides potential areas for future research and

suggestions to improve future analysis.

8

THIS PAGE INTENTIONALLY LEFT BLANK

9

II. BACKGROUND

A. ACOUSTIC RAPID COTS INSERTION

In the mid 1990s, the United States submarine force faced a difficult situation. In

the face of significant budget cuts resulting from the end of the Cold War, the acoustic

advantage that the United States held over its Russian counterparts was eroding

(Boudreau, 2006). Traditionally, this would have resulted in a “multi-billion dollar

development program stretched over 12 or more years” to design a better system

(Johnson, 2004, p. 100). However, due to the economic environment, a new strategy was

needed in order to provide the maximum capability at the lowest possible cost. The result

was an evolutionary acquisition strategy known as the Acoustic Rapid COTS

(commercial-off-the-shelf) Insertion (ARCI) program and the Advanced Processing Build

(APB). The plan for ARCI was approved by the Milestone Decision Authority in 1996,

and the first ARCI upgrade was provided to the fleet in November of 1997, 18 months

later. This was a significantly shorter time than the six-and-a-half years required for the

previous system, the AN/BSY-2 combat system.

ARCI seeks to improve sonar systems in the submarine force through the use of

commercial technology and planned upgrades to take advantage of advances in

technology. The two types of upgrades utilized within the submarine force are known as

technology insertions (TIs) and advanced processing builds (APBs), and are described in

the sections below.

The ARCI goal is to leverage advances in commercial technology to provide

leading-edge products to fleet end users. This is achieved not only through design but

through the opening of competition from a variety of sources, including small business,

universities, government labs, and traditional defense contractors.

1. Technology Insertions

Recognizing the rapidly changing pace of technology, ARCI seeks to take

advantage of advances in processor capability. To accomplish this goal, ARCI

10

implemented a process known as Technology Insertions (TI). Technology insertions are

hardware-only updates to a system. They are provided every two years and establish a

new hardware baseline for future upgrades. This allows ASW systems to take advantage

of the greater processing capacity afforded by commercial advances. They are numbered

according to the year of development. An example is TI–04. This means that the

hardware baseline for that ship’s system was completed in 2004.

2. Advanced Processing Builds

One of the innovative approaches to the ARCI program involves the use of a

design architecture that allows developers to “decompose new systems along natural and

logical boundaries, at the functional string and thread level, to enable focused, iterative

design and assessment” (Johnson, 2004, p. 100). The application software within ARCI is

isolated into functional modules which can then either “stand-alone or can be re-used and

installed in another system application” (Johnson, 2004, p. 100). Ultimately, this allows

modules of software developed for submarines to then be used on other hardware

systems, such as those employed by the surface fleet. In addition, the software used

within an ARCI system is hardware independent, and improvements can be made to

software applications independent of changes in hardware. Within the ARCI program,

these software improvements are referred to as Advanced Processing Builds (APBs).

APBs are managed by the Program Executive Office for Integrated Warfare

Systems 5A (PEO IWS 5A). APBs are “hardware independent software builds to create

or improve functionality for transition to naval combat systems programs” (Program

Executive Office-Integrated Warfare Systems 5A [PEO IWS 5A], 2003, p. 8). PEO IWS

5 (2009) refers to APBs as a “process as well as a product” (p. 1). APBs are developed on

an 18 to 24-month cycle and provide annual deliveries to the fleet (PEO IWS 5, 2003, p.

3). They are numbered based upon the year of development. An example is APB–04.

This means that the software baseline for that system was completed in 2004. The

ultimate baseline for a system can be referenced by the TI and APB

11

baselines. Based on the two examples provided, a ship that has a baseline of TI-04 and

APB-04 contains the hardware and software baselines developed in 2004. The process

used to develop APBs is described below.

The process begins through an “understanding of fleet needs” (PEO IWS 5, 2009,

p. 1) as provided by OPNAV N87 and the APB Development letter (PEO IWS 5, 2009, p.

2). The capability needs of the fleet contained within the APB Development letter are

generated by the Submarine Tactical Requirements Group (STRG). The STRG consists

of Navy captains in “key requirements positions” (PEO IWS 5, 2009, p. 2) that identify

tactical and capability needs within the submarine force (PEO IWS 5, 2009, p. 2). After

review by submarine force leadership, OPNAV N87 provides PEO IWS 5A with the

APB Development letter that contains both the requirements and metrics that must be met

in order to institute the new capability (PEO IWS 5, 2009, p. 2). Further reviews are

conducted once potential capabilities are matched with available technology. When the

final development letter is provided, PEO IWS 5A provides the technology needs to the

following types of organizations:

 University Labs such as the Johns Hopkins Applied Physics Laboratory
(JHU-APL) and the Applied Research Laboratory at the University of
Texas (ARL/UT)

 Government laboratories such as the Office of Naval Research (ONR), the
Defense Advanced Research Projects Agency (DARPA), and the Naval
Undersea Warfare Center (NUWC)

 Small businesses

 Defense contractors such as General Dynamics and Lockheed Martin

There are four steps involved in the development of software for APBs. Step one

of the APB process is technology evaluation and involves the evaluation of products

developed by the organizations listed through a peer review process. According to PEO

IWS 5 (2009),

Peer review is the process by which experts from the Navy and university
labs, developers, scientists, and engineers examine technologies in an
objective manner, each member bringing his or her expertise to bear. It is

12

important that members are from many organizations, that developers are
included, that competition is fair and unbiased, and that entry into the
process is open to all qualified applicants. (p. 8)

The experts selected to examine the products evaluate the current technology and

recommend algorithms for step two, for revision and further review, for deferral to a

future APB, or for rejection (PEO IWS 5, 2009, p. 5).

Step two tests mature technologies “that show promise of providing performance

improvements to satisfy requirements” (PEO IWS 5, 2009, p. 5). Algorithms from step

one are tested in a computing laboratory environment. The results are then evaluated

and technologies are recommended for further development and testing (PEO IWS 5,

2009, p. 5).

Step three integrates the technologies into a system to test the functionality on the

most current hardware available. Testing in Step three “measures performance of

individual algorithms as well as the integrated system using real and simulated data to

ensure that the product addresses requirements and provides a measurable return on

investment” (PEO IWS 5, 2009, p. 6). A report on the results is prepared by the Test,

Evaluation, and Assessment Support Group (TEASG) to recommend the new algorithms

for step four.

Step four is performed in odd years of the APB, and consists of at-sea-testing.

Results from step four are provided to PEO IWS 5A, which then make a recommendation

of the algorithms tested for production (PEO IWS 5, 2009, p. 6). Algorithms accepted for

production are then provided to applicable program offices within the Program Executive

Office (PEO) for Submarines.

Final production is accomplished by the system integrator. For acoustic-related

software, Lockheed Martin’s Maritime Systems and Sensors Division, located in

Manassas, VA, is responsible for final integration and production of a new APB baseline.

However, production does not begin only after the completion of step four. Production is

13

an ongoing process, begins early in the development cycle (PEO IWS 5, 2009, p. 4), and

involves the system integrator and the organizations that develop the final technology

products.

The APB process recognizes that the “development of adaptive, complex systems

requires an iterative design and development approach” (Johnson, 2004, p. 100).

Additionally PEO IWS 5 (2009, p. 12) cites several principles that affect its overall

success.

 No one organization has the complete answer.

 Small businesses are key to innovation. Their input must be
sought, and their viability must be sustained.

 An open process exists, based on mutual sharing of development
materials, where legitimate intellectual properties are protected.

 Cooperation among participants in the development process is
essential to delivering a quality product in the time frame
available.

 Fair testing, conducted by independent evaluators, using real data
and fleet operators, and where possible sea testing is needed to
ensure that the APB is effective.

 Fleet input is sought and used throughout the development cycle.

 All participants are governed by the same set of rules.

a. Advanced Capability Builds

The surface community employs a similar process known as the Peer

Review Process (Clements, Cohen, and Bergey, 2006, p. 21). It also utilizes a peer review

process to develop and integrate new technology. The upgrades created by the process are

known as Advanced Capability Builds (ACBs). In the future, the intent is to incorporate a

software library into the process as well. The library is known as the Common Asset

Library (CAL). The CAL will serve as a repository for components that will later be

integrated into Advanced Capability Builds (P. Gill, personal communication, March 23,

2009).

14

b. Advanced Processing Builds and Software Reuse

The APB process is one of the primary methods of software development

for the submarine community. Although initially meant to provide only improvements to

sonar systems, APBs now incorporate improvements to tactical systems such as fire

control systems. Additionally, APBs are cumulative. That is, they build upon previous

versions. Thus, when a system is updated it not only gets the current version of the APB,

but all of the previous upgrades as well. In terms of software reuse, this is a key

consideration, specifically when viewing an APB as a product. They are designed to be

easily “ported” from one system to another with few code changes (Clements et al., 2006,

p. 29).

c. Funding

Although APBs provide systems with updated technology, they require a

steady stream of research, development, test, and evaluation (RDT&E) funding to

produce annual upgrades and establish new APB baselines. Once APBs and TIs are

developed, they must also be purchased and installed using Other Procurement, Navy

(OPN) funds.

APB updates are not provided to each submarine annually. The goal is to

update a percentage of fleet systems on an annual basis. This percentage may vary

depending upon funding and ship schedules. There is currently a wide range of APB and

TI baselines within the fleet, from TI-98 to TI-08 and APB-00 to APB-07. So, despite

having hardware baselines developed every two years and software every year, there are

some units operating with hardware baselines that are ten years old and software that is

eight years old. This is still a better alternative to previous methods of development and

system upgrade that allowed some ships to operate with technology that may have been

fifteen to twenty years old.

3. Commonality

Anti-submarine warfare is a complex national security mission that requires

coordination among various communities within the Navy. An inability to find and

15

prosecute enemy submarines can cause significant losses to Navy assets and severely

disrupt the ability to control the seas during a time of war (Benedict, 2005, p. 93-94).

Unifying the efforts of each of the communities with respect to “vision, acquisition

strategy, and the organization and resources needed to implement them” provides greater

assurance that required capabilities are implemented (Benedict, 2005, p. 95). Within the

Navy, the anti-submarine warfare mission is common to the submarine, surface, aviation,

and surveillance communities.

In order to achieve commonality of fleet wide submarine sonar systems, ARCI

implemented a phased approach to replace and upgrade existing systems. This goal has

largely been achieved (Clements et al., 2006, p. 17). In addition to realizing the potential

for commonality of sonar systems across the submarine community, the separation of

sonar system functions presents an opportunity for greater commonality across other

communities such as surface, air, and surveillance (Clements et al., 2006, p. 15). Sonar

systems in their basic form consist of hydrophones, arrays, inboard processors and

processing, and operator displays (Clements et al., 2006, p. 14).

Operation of sonar systems can be broken down further and described as the

processing of acoustic signals detected by sensors and displayed in some form to an

operator (Clements et al., 2006, p. 14). Acoustic signals are detected by arrays consisting

of hydrophones and transducers used to detect radiated noise. Each type of array detects a

certain type of acoustic signal (Clements et al., 2006, p. 15). In general, the types of

acoustic signals are broken down into ranges of frequencies and are classified as either

low frequency (LF), medium frequency (MF), or high frequency (HF) (Clements et al.,

2006, p. 15). Just as the arrays themselves differ in structure, the processing required to

“translate” the signals into usable operator output differs (Clements et al., 2006, p. 15).

The potential for commonality and software reuse across sonar systems involves uniform

processing between the three ranges of frequencies as opposed to the individual arrays

themselves (Clements et al., 2006, p. 15).

16

The operation of fire control systems can be similarly broken down. A fire control

system takes data from sonar or other inputs, tags the data, stores them, and then creates a

target solution that can be used to fire weapons. Although there may be differences in the

source of the data, the functionality of the system remains the same.

By breaking down these software intensive systems into their functional modules,

the opportunity to reuse them in other applications is enhanced. Systems on other

platforms that have the same capability requirements could potentially reuse components.

Specific metrics evaluating the extent to which this is accomplished are not well

documented. However, anecdotal evidence from program offices and contractors

confirms that ASW software is reused within and between the submarine, surface, air,

and surveillance communities. Software reuse is discussed in further detail in the

following sections.

4. Summary

The goal of the ARCI program is to provide the submarine community with

improved system performance at lower costs (Naval Sea Systems Command [NAVSEA]

PMS 4252, 1999). A study conducted in 2006 comparing the costs of the ARCI strategy

of development and acquisition to legacy sonar systems (ASSET, 2006) found the

following results:

 2.1 to 1 reduction in budget allocation across Shipbuilding and

Conversion, Navy (SCN); Other Procurement, Navy (OPN); Operations

and Maintenance, Navy (O&MN); Research, Development, Test, and

Evaluation (RDT&E); and Military Construction (MilCon)

 6 to 1 reduction in contract dollars for development and production

 8 to 1 reduction in operating and support costs

17

The researcher was unable to validate these data. However, the results have been

validated by NAVSEA. The depth of this report is outside the scope of this research and

simply provides an indication of the success of the ARCI program. Finally, the cost

reductions described are not software exclusive and take all aspects of a sonar system into

account, including hardware.

B. SOFTWARE REUSE CONSIDERATIONS

Software reuse is not a new concept within the Department of Defense.

Government Accountability Office [GAO] (1993) analyzed the Department of Defense’s

plans to take advantage of software reuse in an effort to lower acquisition costs. At the

time, the Department of Defense estimated that it was spending in excess of $24 billion

per year on software related expenses (GAO, 1993, p. 1). The report cites a draft of the

Department of Defense’s technology strategy from 1991, where a savings of $11.3 billion

is estimated over a fifteen-year period due to software reuse (GAO, 1993, p. 19). The

accuracy of this estimate is not known, but the report illustrates the prolonged interest in

software reuse.

The potential benefits of software reuse are well documented in the literature

(Karlsson, 1995; Mili, Mili, Yacoub, and Addy, 2002; Poulin, Caruso, and Hancock,

1993). Potential benefits include reduced cost, greater productivity, shorter development

time, and increased quality. Strategies and methods of determining the potential benefits

of reuse are also the subject of numerous studies (Poulin et al., 1993; Rothenberger,

Dooley, Kulkarni, and Nada, 2003). A finding that is common to several studies comes

from Nelson (2007):

If reuse is to be of substantial value to an enterprise, it will require
management. The enterprise will have to establish some method by which
reusable components are proposed, validated and made available; it will
also need to establish methods to assure that new projects make the most
use of existing reusable assets. This can present an organization with
challenges in how to share the costs, ownership and cross-organizational
responsibilities. (p. 27)

18

This quote provides a baseline of the factors involved in taking full advantage of

software reuse in the large-scale development of software systems. It illustrates the

necessity for combining both technical knowledge and managerial skill when attempting

to apply software reuse to the development process.

1. Definition of Reuse

As mentioned above, software reuse can be complicated and may encompass a

wide range of strategies. Thus the concept of software reuse requires a broad definition.

Karlsson (1995) defines software reuse as the “process of creating software systems from

existing software assets rather than building software systems from scratch” (p. 3). PEO

IWS 7 (2007) defines software reuse as “the process of implementing or updating

software systems using existing assets” (p. 10–9). Reuse does not simply refer to the

recycling of the same system. A component can be used many times, but only reused one

time per application (Poulin et al., 1993, p. 576). In other words, if a software asset is

reused to create multiple copies of the same system, each copy is not considered an

example of reusing software, only the original is.

It is important not to confuse reuse with recycling of software assets. To classify

as reusable, a software component must be capable of being used in other applications

that are similar. Determining instances that facilitate the reuse of a component are

important in the reuse process. Further guidance is provided within the literature and texts

concerning what products associated with software development should be considered

candidates for reuse.

2. Reusable Assets

Software code is typically the most common asset involved in reuse (Mili et al.,

2002, p. 7). However, it is worth noting that there are other assets associated with

software development that are considered reusable. Classifying the types of assets that

can be considered reusable is a key aspect of the practice of software reuse. Having a

better understanding of all of the assets that can be considered for reuse allows

organizations to better determine how to take advantage of reuse. The assets listed below

19

are not comprehensive, but represent a general description of the types of assets that are

available when making the decision to reuse software. The list is taken from Mili et al.,

(2002), but other references such as Poulin et al., (1993) and Karlsson (1995) contain

similar descriptions of assets. PEO IWS 7 (2007) provides descriptions of assets that are

tailored to the specific aspects of Department of Defense software development and

testing processes. Mili et al., (2002, pp. 7–9) covers these assets and how they can be

classified on a more general basis.

 Executable Code: The essence of a piece of executable code is the
function that it computes; executable code is typically represented in
machine-readable form, and is indexed by means of its functional
properties.

 Source Code: Source code embodies a function. But to the extent that it
also embodies structural information, source code can be viewed as
problem-solving knowledge. Source code is represented by programming
languages, and can be indexed by means of its structural properties, as
well as its functional properties.

 Requirements Specification: Requirements specifications are
descriptions of the systems being developed. They are the products of
eliciting user requirements and recording them in some notation.
Specification can be represented in natural language, in formal notation, or
in a mixture thereof. Specifications are indexed by means of the functional
properties that they capture, and may be reused to build either compound
specifications or variations on the original product.

 Designs: Designs are generic representations of design decisions. Their
essence is the design/problem-solving knowledge that they capture. In
contrast to code assets, designs are not executable. In contrast to
specification assets, they capture structural information rather than
functional information. They are represented by patterns that can be
instantiated in different ways to produce concrete designs. Unlike
functions or modules, designs cannot be indexed by their functional
properties; rather they can be indexed by features of the family of
problems that they solve.

 Test Data: Once a software system has been designed it typically must be
integration-tested using some test data. These test data can be reused to
test the system following some action such as maintenance or can be
reused to test a similar product which has a similar set of inputs but
different output conditions. Representation of these data is
straightforward, and the data can be indexed by a description of the input
domain of the software system or some general indication of the function
of the system.

20

 Documentation: Natural-language documentation that accompanies an
asset can also be a reusable asset. Documentation is most typically
represented in natural language and can be indexed via the asset that it
documents.

 Architectures: Software architecture defines the structure of a software
system as the aggregate of a set of components that exchange data. The
constructs by which building blocks are usually combined in an
architecture have a higher level of abstraction than do programming
language constructs, and are of a different nature. They prescribe
information flow, control flow, or communication protocols between
components. Architectures are represented by means of specialized
notations, and are indexed by means of their architectural features.

3. Summary

Illustrating the number and variety of assets that can be considered for reuse

shows that there is not a simple answer to the question of how to achieve the maximum

benefit from the reuse of software assets. Reusing software assets is not the same as

reusing other assets in an engineering process (Mili et al., 2002, p. 1). It is not like

reusing raw materials that can be easily quantified in terms of their market value.

However, in order to measure the benefits of reuse, there must be a quantifiable

measure that can be used to “assess the products and processes of software development”

(GAO, 1993, p. 10). Despite the variety of assets available for reuse, software code is the

most common asset referenced when describing reuse. This ignores the expertise and

knowledge (intellectual property) gained by personnel who originally worked on the

code. In some cases, simply providing software code without other assets can actually

drive up costs (Mili et al., 2002, p. 7).

Other aspects of software code that make prediction of savings difficult is the

programming language in which it was written and whether the amount of reused code is

more or less than the amount of code that would have actually been required for the

system. Software development is still an evolving discipline and there is no dominant

programming language used across the industry. The variety of programming languages

can have problematic effects on a development effort. The AN/BSY-2 program

21

experienced this when it attempted to use a type of programming language that was

relatively new (GAO, 1989, p. 2). This required additional training costs to support the

development effort.

Another shortcoming of expressing reuse benefits in terms of code is the variety

of solutions for a problem available. A simple problem can be solved in a number of

ways using varying amounts of software code in any number of languages. An internet

challenge to find different ways to generate the lyrics of the song “99 Bottles of Beer”

has generated over 1270 variations, all of which are valid (Schade, 2009).

C. SOFTWARE REUSE COSTS AND BENEFITS

Several software cost models have been developed in an effort to provide cost

estimators and financial managers a vehicle to determine the projected costs associated

with software development. The intent of this research is not to describe or assess each

model. The COCOMO II model from Boehm et al., (2000) is chosen, along with input

from various cost analysts within the Air Force and Navy to provide a background of the

factors that contribute to software development costs and explain how software reuse can

affect the cost of a system.

It is important to understand that there are shortcomings with any cost model. The

researcher was not able to analyze the data used to create the model, nor is that within the

scope of this research. The purpose of this section is to illustrate that there is no simple or

widely used metric for determining reuse success.

Because software development is labor intensive and expensive (Karlsson, 1995,

p. 9), the primary cost driver in the development of a software system is the effort of

developers. The ultimate goal of a cost model is to determine the amount of effort

required to complete a software project and assign a cost to this effort. Boehm et al.,

(2000), express the effort in terms of “person-months” (p. 29). This number can then be

converted into some form of compensation for the developers based upon site-specific

information. The quantity of person-months required for the completion of a project is

based primarily upon the size of the project and the productivity of the individuals

22

working on the project. COCOMO II uses “source lines of code (SLOC)” (Boehm et al.,

2000, p. 29) as the basic measurement of size. This is consistent with how Navy cost

estimators determine the size of a software project. Productivity can be estimated using

historical data (Boehm et al., 2000) or can be determined from site-specific data based on

the individuals working on a project. Boehm et al., (2000) expresses this number in

“Person Months per Thousand Source Lines of Code” (p. 29).

In addition to these factors, Boehm et al., (2000) use multipliers that account for

additional factors that can have an effect on the effort required to complete a project and

scale factors that “account for the relative economies or diseconomies of scale for

software projects of different sizes” (p. 30). Scale factors have numerical values

associated with subjective ratings based on factors such as “Team Cohesion, Process

Maturity and Precedentedness” (Boehm et al., 2000, pp. 33–34). Effort multipliers also

assign numerical values based on subjective factors such as “Product Complexity,

Required Software Reliability, and Personnel Experience” (Boehm et al., 2000, pp. 41–

42). Descriptions of these and other multipliers can be found in Boehm et al., (2000)

and Cummings, Gallo, Johnson, Marsh-Jones, and von Kuegelgen (1998). Use of

multipliers such as those listed illustrates the level of subjectivity involved in accurately

estimating the cost of software development. Thus, the effort required is affected by the

estimated size of a software program, the productivity of the developers, factors

accounting for economies or diseconomies of scale, and various multipliers that can

directly affect effort.

Not mentioned yet in the discussion of software estimation factors is the effect of

reuse on the cost of a project. Boehm et al., (2000) explain that “code taken from another

source contributes to a product’s effective size” (p. 19). Two types of reused code are

accounted for in the model: preexisting code that can be plugged directly into a product

and preexisting code that must be modified prior to being reused. The categories of

reusable software code are explained later, but it is important to understand how reused

software relates to cost prior to describing the forms that reused software can take. To

estimate the effective size of reused software code, Boehm et al., (2000) use a factor

23

called “equivalent source lines of code” (p. 19). This value is then added to the estimated

source lines of code for a project. Converting reused code into equivalent source lines of

code is necessary due to the non-linear effects of reuse.

Non-linear reuse effects originate due to the two types of software reuse efforts

mentioned. Based on a study by Selby (as cited in Boehm et al., 2000) on the NASA

Software Engineering Laboratory, two primary effects of the non-linear effects of reuse

are evident. The first is that the effort associated with reusing software code does not start

at zero (Boehm et al., 2000, p. 20). Selby found that the cost to reuse a line of code

verbatim with no modification is equivalent to five percent of the cost of developing a

new line of code (Boehm et al., 2000, p. 20). Software cost estimators at NAVAIR

provide a variety of ranges. Depending on the contractor, the cost of an unmodified

reused line of code can range from one percent to 25 percent of the cost to develop a new

line of code. These numbers fall within the average determined by Selby, but certainly

illustrate the uncertainty involved in the cost estimation process.

Five percent of the cost of a new line of code applies if the code being reused

does not have to be modified. The second non-linear effect results from code that must be

modified. Selby found that as more code must be modified, the costs of modification

increase disproportionately to the amount of code being modified (Boehm et al., 2000,

pp. 20–21). Boehm et al., (2000) attribute these increases to the cost of “understanding

the software to be modified, and the relative cost of checking module interfaces” (p. 21).

Again, there is no consensus on the relative cost of modifying reused code, but there is a

disproportionate cost of having to modify lines of code. From Boehm et al., (2000) and

cost estimators, this can typically range from 30 to 60 percent of the cost of developing a

new line of code. Above a certain percentage of modification it is likely that the reused

code will be more expensive to use than simply developing the code from scratch

(Boehm et al., 2000, pp. 20–21). Within the cost model this value equates to

approximately 25 percent. Therefore, if more than 25 percent of the code must be

modified, then it may be more cost effective to simply develop the code from scratch.

24

To capture these non-linear effects, Boehm et al., (2000) again use multipliers to

provide an estimate of the equivalent size of the project and the effort required for

completion. These multipliers also assign quantitative values to subjective factors such as

“Programmer Unfamiliarity, Software Understanding, and Assessment and Assimilation”

(pp. 23–24).

Full descriptions of the multipliers can be found in the text. These further

illustrate the uncertainty and subjective nature of quantifying the costs of developing

software programs and products.

In 2004, the Department of Defense began requiring contractors to provide forms

known as Software Resource Data Reports (SRDRs) at various stages of development for

Acquisition Category (ACAT) I and IA programs (Software Resource Data Report

[SRDR], 2005). In addition to programming language and development effort data, these

SRDRs require contractors to provide three categories of software code: new code to be

developed and delivered, modified code to be developed and delivered, and unmodified,

reused code to be developed and delivered. The data contained within these SRDRs

combined with the costs associated with the program can then be used to develop a more

defense oriented model that incorporates reuse. Currently, different organizations rely on

different models to predict the cost of software systems.

1. Types of Reuse

Now that the potential effect on costs has been discussed, it is important to

understand the different forms that reusable software code can take. Prior to reusing any

type of software code, an analysis is conducted to determine if and how it can be

integrated into a system and whether it will be cost effective. It is beyond the scope of

this research to describe all of the types and scope of the analysis, but they can be found

in the literature (Karlsson, 1995; Mili et al., 2002; Prieto-Diaz and Freeman, 1987). In

general, Prieto-Diaz and Freeman (1987, p. 6), states that code reuse involves three

general steps.

25

 Accessing the code

 Understanding the code

 Adapting the code

This list is not inclusive of all situations involving the development of a software

product, but provides background on the different types of reuse and the effort associated

with their use.

a. Black-box Reuse

Black-box reuse is a software asset that can be integrated “verbatim” into

a host system without any modification (Mili et al., 2002, p. 18). The ability to

incorporate black-box software assets into a development program is the most desirable

type of reuse due to the limited effect on effort. Users of black-box assets need only a

limited understanding of the asset in order to facilitate its reuse and do not require

significant knowledge of its design (Mili et al., 2002, p. 18).

b. White-box Reuse

White-box assets require analysis and modification before they can be

integrated into a new system (Mili, et al., 2002, p. 18). Assets classified as white-box

require the user to understand additional details when considering the asset for reuse, and

thus entail more effort. This additional effort can be accompanied by increased cost and

production delays. As discussed in the non-linear effects of software reuse, the total

amount of additional effort is affected significantly by the amount of code that must be

modified prior to reuse. Depending on the amount of modification necessary, it may be

more cost-effective to simply develop the required software code from scratch.

Although not as beneficial to the organization, this is the most common

type of reuse. An analysis of the SRDR database by NAVAIR cost analysts found that

reused code is almost always accompanied by new or modified code. As discussed

earlier, modifying code can incur a wide range of costs

26

Another interesting aspect of this type of reuse involves the uncertainty

that can be involved even when the code has been modified. Analysis of 39 computer

software configuration items by NAVAIR cost analysts revealed that 18 of the programs

ended up with less reused lines of code than planned and 21 had the same or more.

Further, of the total 39, 27 resulted in reused code being a smaller percentage of the total

delivered code than was originally planned (M. Popp, personal communication, January

28, 2009). This illustrates that even if the amount of software reused by a program

increases, the required code to modify and integrate it into a system may grow at a faster

rate.

White-box reuse can result in software development savings. The

literature provides details on the analysis required and the processes that should be in

place in order to maximize these savings. Additionally, there are development processes

available to mitigate the amount of modification necessary to effectively use existing

software code. Ultimately, although there is a potential for savings from white-box reuse,

without the proper analysis these savings can quickly evaporate as more code must be

developed for modification and integration into a system.

c. Commercial-off-the-Shelf (COTS)

Boehm et al., (2000) describe COTS as “pre-built commercially available

software components” (p. 237). Mili et al., (2002, p. 566) classify a component as

commercial-off-the-shelf if it meets the following general characteristics.

 It is sold, leased, or licensed to the general public.

 Buyers, lessees, and licensees have no access to the source code.

 It is offered by a vendor that created it and is responsible for its
upgrades.

 It is available in multiple identical copies on the market.

Use of COTS software products can be beneficial, but like white-box

components, COTS typically requires modification prior to reuse in a new system. The

new code required to integrate COTS components into a larger system is referred to as

27

“glue code” (Boehm et al., 2000, p. 249). As with other methods of reuse, there are

arguments for and against the use of COTS components in systems. One of the main

arguments for using COTS components is decreased development time from using

“existing, market-proven, vendor-supported products” (Boehm et al., 2000, p. 237).

Reducing development time can result in reducing the overall development cost. Boehm

et al., (2000) also identify several risks involved with the use of COTS.

Traditional costs associated with new software development such as the
cost of requirements definition, design, code, test, and software
maintenance. Additionally, the cost of licensing and redistribution right,
royalties, effort needed to understand the COTS software, pre-integration
assessment and evaluation, post-integration certification of compliance
with mission critical or safety critical requirements, indemnification
against faults or damage caused by vendor supplied components, and costs
incurred because of incompatibilities with other needed software and/or
hardware. (p. 238)

These risks can be compounded if COTS source code is not available to

developers. However, the literature also expresses that if these risks can be effectively

managed and evaluated prior to development of a product, COTS integration can be

successful in driving down development time and costs.

Ultimately, the use of COTS is similar to white-box reuse in that it

requires additional code to integrate the code into a new system. The difference is that

this code comes in the form of “glue code” as opposed to modification of the original. As

stated, COTS components can be more difficult to actually modify, therefore the

motivation to reuse COTS is to find components that can be integrated into a system with

as little extra code as possible. Again, like white-box, the amount of glue code depends

upon the components being reused.

Despite the potential challenges associated with COTS, the ultimate

benefits can be significant. In the development of the Virginia Class submarine

command, control, communications, information (C3I) system, Lockheed Martin utilized

COTS in 76 percent of the software and 78 percent of the hardware (Lockheed Martin,

2003). They attributed this to a reduction in development costs of five to one over

28

previous submarine combat systems (Lockheed Martin, 2003). COTS components do

have advantages, but it is important to understand the associated risks and potential for

additional licensing costs when using them in system development.

During times of rapid technological change, it is difficult for one firm or

organization to develop and take advantage of all advances in technology. COTS

products provide the opportunity to leverage the development efforts of many

organizations in a variety of fields to provide greater capabilities.

2. Planned Reuse

Now that the costs associated with reuse and the various types of reuse have been

described, the methods of incorporating this reuse into an organization’s software

development strategy are discussed. Planned software reuse is described in other ways

within the literature. Karlsson (1995) refers to planned reuse as development for reuse.

This distinction is important from a development and cost avoidance perspective. As

identified by Poulin et al., (1993),

Planned reuse starts early in the software life cycle and involves a
thorough requirements study and domain analysis of the problem area. By
doing this additional planning and domain analysis, organizations identify
the factors that normally change in software. Examples are hardware or
system software; user, mission, or installation; and function or
performance. (pp. 573–574)

Domain analysis of software components is essential to the correct classification

of components for future reuse. Mili et al., (2002) define a domain as an “area of

knowledge or activity characterized by a family of related systems. A domain can also be

defined by the common managed features that satisfy a specific market or mission” (p.

125). Methods of conducting domain analysis are outside the scope of this research.

Planned reuse is described first due to the wide acceptance in the literature that it

results in greater “cost and productivity benefits” (Poulin et al., 1993, p. 575) than

opportunistic reuse. These benefits hinge on the potential for future application of a

component. Planned reuse requires that components are developed in a manner that

allows for their future use with as little additional effort as possible. This requires that

29

components are developed generically and with enough documentation to enable future

users to understand the details and functions of the component quickly and easily.

Because software development costs are labor intensive, the additional effort to design

components in this manner also incurs additional costs. Mili et al., (2002) state that on

average, the cost to develop a software asset for reuse is 1.5 times greater than the cost to

develop it for a specific application. The additional cost to develop therefore requires that

there be sufficient future applications where the savings derived from reusing a

component will offset the additional up-front costs necessary to develop a component

for reuse.

Poulin et al., (1993) describe the savings from planned reuse as “reuse cost

avoidance” (p. 583). Reuse cost avoidance comes from the difference between the

combined savings from reusing components and the additional cost required to develop a

component for reuse. Cost avoidance is classified into two components, development

costs avoidance and service cost avoidance (Poulin et al., 1993). Development cost

avoidance is derived from the reduction in overall effort required to develop a new

software system from components initially developed for future use (Poulin et al., 1993).

Service cost avoidance refers to the savings that can be achieved by not having to fix

errors in code that has been reused (Poulin et al., 1993). The assumption here is that

reused code will have fewer errors.

The following are examples of methods used in an effort to foster reuse within an

organization.

a. Software Product Lines

In an attempt to take advantage of the greater benefits offered by software

development through programs of planned reuse, organizations have developed

structured business plans. One such plan is the Software Product Line (SPL) developed

by Carnegie Mellon’s Software Engineering Institute (SEI). The SEI website contains

significant guidance concerning how to develop, maintain, and benefit from a product

line approach to software development. The SEI defines a software product line as “set of

30

software-intensive systems that share a common, managed set of features satisfying the

specific needs of a particular market segment or mission and that are developed from a

common set of core assets in a prescribed way” (Software Engineering Institute [SEI],

2009). In a product line, core assets are developed and then other individual products are

built according to a “pre-defined production plan” (Bergey, Fisher, Gallagher, Jones, and

Northrop, 2000, p. 3).

Bergey et al., (2000) describe the fielding of a product line as “core asset

development or acquisition and product development or acquisition using core assets” (p.

5). Also important to the concept is that the core assets and products do not have to be

developed separately or in a specific order. Figure 1 (Clements et al., 2006) illustrates

that core assets can come from products already in existence or from products developed

using core assets (Bergey et al., 2000, p. 5). Additionally, core assets can be developed or

procured first and then used to produce software that is not fully developed. The value of

the core assets is based upon the number of products that can be developed using them

(Bergey et al., 2000, p. 6). This value is not set and can vary depending upon the

organization and the nature of the business.

Figure 1. Software Product Line Essential Activities (From Clements et al., 2006)

31

There are numerous case studies, some specific to the Department of

Defense and ASW software development that outline the process used to assess the

benefits of a Software Product Line to the Department of Defense. Cohen, Dunn, and

Soule (2002) use the Naval Undersea Warfare Center (NUWC) as the basis for one of the

case studies. The results of the study indicate that NUWC was able to save $15 million

from an investment of $3.5 million (Cohen et al., 2002, p. 35). NUWC was also able to

reduce the development time from years to months for products developed within their

Rangeware software product line (Cohen et al., 2002, p. 36).

In the lessons learned section, the study acknowledges that NUWC is the

supplier and the customers were well defined prior to the implementation of the program.

It further acknowledges that the model is similar to a contractor “supplying products built

from assets” (Cohen et al., 2002, p. 38). The risk for the Department of Defense is that

this may place heavy reliance on one contractor. Additionally for large system

acquisitions, this may be beyond the ability of one contractor. The benefits of using a

Software Product Line have been well documented. The Software Engineering Institute’s

website contains numerous case studies detailing these benefits.

Although the case studies presented illustrate the benefits in cost,

development time, and quality of adopting a software product line approach to software

development, there is also acknowledgement of the difficulties in adopting the approach

within the Department of Defense acquisition environment. Due to downsizing of the

acquisition workforce, the Department of Defense relies more on acquisition of “software

intensive systems” rather than “in-house” development (Bergey et al., 2000, p. 1). For

large Department of Defense programs, adopting the product line practice requires

suppliers or contractors to develop core assets and another group of contractors or

suppliers to then reuse these components (Bergey et al., 2000, p. 11). Taking advantage

of such an approach requires a change in the acquisition culture for both contractors and

the Department of Defense. Developers must have access to core assets and be willing to

32

use them in their own system development. Additionally, Department of Defense

programs must be willing and have the vision to develop assets for future reuse (Bergey

et al., 2000, p. 11).

b. Software Libraries

Even when software components are developed for reuse, there must still

be an effective system in place to minimize the non-linear reuse effect associated with

retrieval. Although five percent of the cost of a new line of code is small, this cost can

increase based on the difficulty in finding a component. Organizations have turned to the

use of software reuse libraries in an effort to provide a common storage area for assets

developed within an organization.

According to Mili et al., (2002), a useful reuse library must have a method

of storing and retrieving components that improves the ability of developers to access and

characterize them for reuse. There are also risks associated with libraries. According to

Nelson (2007) “without active management and processes that encourage reuse, asset

repositories will simply become dumping grounds for large numbers of files” (p. 28).

Therefore, there are also costs associated with establishing and maintaining a successful

reuse library. There must be effective storage and retrieval methods, as well as stringent

evaluation of components. If a component is too difficult to find or retrieved components

have errors, developers may determine that new design is a more effective method of

completing a task.

An example of a software library is the Oceanographic and Atmospheric

Master Library (OAML) operated by the Commander, Naval Meteorology and

Oceanography Command (CNMOC). It is an example of a Navy software library of

“models, algorithms, and databases that describe the ocean and atmosphere. It is updated

and maintained by CNMOC and currently contains 63 products composed of 20

databases, 30 models, and 13 algorithms. The software products are “machine

independent” and easily ported between systems (Naval Meterology and Oceanography

Command [CNMOC], 2009).

33

Data collection for the library comes from a variety of sources including

Navy labs, universities, contractors, private firms, and international data acquisition

(CNMOC, 2009). Requirements can come from fleet needs, advances in technology, or

from individual navy programs that have a need for the software updates. Once the

requirements are defined and the data collected, the potential solutions are developed,

verified, and validated prior to being accepted into the OAML database. Following

acceptance, the new software products are distributed to the necessary fleet elements and

integrated into new or existing systems. The products developed by OAML are designed

for reuse in other systems and have been used extensively.

The benefits associated with the products developed by the OAML are

unique from private software libraries in that they are developed to fulfill a necessary

capability for operational units (CNMOC, 2009). The benefit for the Navy is that the

assets developed for the database only have to be developed once. Additionally, because

the assets are maintained and updated by a single organization, it is more efficient.

One aspect of setting up and maintaining a library is to determine the

metrics used for evaluating its success. Because the Department of Defense is an acquirer

of software systems, this can be difficult to determine. Mili et al., (2002) provide several

metrics that can be used.

 Number of Accesses to the Library

 Number of Retrievals from the Library

 Library Efficiency

The number of accesses to the library is simply the number of times that

the library is accessed in a given time period. This may be an indication of the perceived

quality of the library (Mili et al., 2002, p. 490). However, it may not be indicative of

actual uses of components.

The number of retrievals from the library refers to the actual assets

extracted for reuse. This could be an indication of the actual quality of the assets

available (Mili et al., 2002, p. 490).

34

Library efficiency is the “ratio of the number of reused assets that have

been extracted from the library per unit of time over the total size of the library (Mili et

al., 2002, p. 490). This gives an indication of the actual use compared to the size.

The importance of maintaining metrics is to ensure that the cost of placing

assets into a library and subsequently maintaining the reuse library do not exceed the

benefits. Ultimately, if a library is not being accessed or used with any measurable

results, it should be removed from service.

c. Department of Defense Communities of Interest (COI)

Department of Defense Chief Information Officer [DoD CIO] (2007)

defines a Community of Interest (COI) as a “collaborative group of users who must

exchange information in pursuit of their shared goals, interests, missions, or business

processes and who therefore must have shared vocabulary for the information they

exchange” (p. 3). A COI is designed to aid in sharing data between organizations that

may require their use. This can include organizations within the Department of Defense

and other agencies such as the Department of Homeland Security (DoD CIO, 2007). The

intent is that the COI have an impact on acquisition. Overall, a COI would be established

to share information between “known and unanticipated users” (DoD CIO, 2007, p. 4).

Chartering of a COI could provide greater opportunities for software reuse

among the organizations involved. A COI could facilitate the standardization of data and

ensure that the other members have a greater understanding of the assets and resources

that are already available. Although such a level of sharing would be beneficial, getting

the cooperation of all stakeholders such as program offices, end users, and developers

cannot be viewed as a simple task. In addition, no extra funding is provided for the

establishment of a COI (DoD CIO, 2007, p. 5). Participating organizations must plan

their budgets to support COIs. Therefore, participation will have to be considered

beneficial at all levels of an organization prior to obtaining funding for such an effort.

35

The potential for developing a software reuse program within the construct

of a COI is available, but it will require some level of analysis to determine whether it is

a worthwhile effort.

3. Opportunistic Reuse

Karlsson (1995) refers to opportunistic reuse as software development with reuse.

Poulin et al., (1993) describe it as code recovery. Where planned reuse involves an

organizational strategy and initial investment in developing components for reuse,

opportunistic reuse simply takes advantage of assets such as software code that are

already in existence. Poulin et al., (1993) consider opportunistic reuse as an inferior

strategy to planned reuse and do not believe that the same degree of benefits can be

achieved through opportunistic reuse. Opportunistic reuse can be more susceptible to the

non-linear reuse effects discussed previously. A component not developed for reuse may

not have all of the required documentation to make it cost effective to reuse.

An example of opportunistic reuse related to Anti-Submarine Warfare (ASW)

comes from a software developer and analyst at the Naval Center for Cost Analysis that

worked on both the Mk-118 Fire Control System for the Trident submarines and its

predecessor, the Mk-117 Fire Control System, developed for fast attack submarines.

While working on the Mk-118 project, the developer recommended “bringing over” or

reusing applicable software from the Mk-117 (S. Oxman, personal communication,

February 24, 2009). In doing so, the project was able to save both time and resources.

One could investigate further and attempt to determine how much software code was

reused, how long it took to integrate, and what the overall cost avoidance was in this

instance. However, the basic fact is that this action saved both time and money.

Additionally, there could be an evaluation of the processes in place that fostered the

reuse, but in this case the reuse was conducted based on experience and an understanding

of the system being developed. The reuse in this case is considered opportunistic because

there was no formal plan for reuse. One of the managers was familiar with previous

projects and was able to use that knowledge to benefit another project.

36

Despite the success achieved in this case, it is not the most efficient method of

reusing software. Recognizing that if that particular developer had not been experienced

in both projects, that particular instance of reuse may not have occurred and the project

may not have been as successful. For this and other reasons, there has been a movement

to formalize processes associated with the reuse of software components.

4. Organizational Issues

Despite the benefits that can be obtained from reusing software, some

organizations are still resistant to incorporating widespread software reuse. Although

organizations are motivated by financial results there are still other factors that contribute

to the decision. Adopting widespread software reuse in companies requires a change in

operational procedure (Mili et al., 2002, p. 7). Such a decision can affect all levels of an

organization (Haefliger, von Krogh, and Spaeth, 2008, p. 181; GAO, 1993, p. 10). In

some cases, the organizational obstacles can be more difficult to overcome than the

technical issues (Haefliger et al., 2008, p. 181). Program managers, driven by external

factors such as funding and schedule (GAO, 1993, p. 10) may not be willing to allocate

additional time and resources to “develop reusable software components” (GAO, 1993, p.

10). A reluctance of developers to use components developed by someone else can also

be a barrier to reuse (GAO, 1993, p. 10).

The Navy is not immune to these types of organizational issues. Although the

Navy has recognized commonalities within the ASW mission area and the potential for

reuse, the culture of the acquisition environment presents difficulties (Clements et al.,

2006, p. 17). Just as the ASW mission is spread across multiple communities, the

acquisition of ASW systems is divided among several program executive offices (PEO)

(Clements et al., 2006, p. 12).

37

 PEO Subs

 PEO Ships

 PEO Littoral and Mine Warfare

 PEO Integrated Warfare Systems

 PEO Carriers

These organizations are further divided into program management offices that

may deal more directly with specific ASW software applications. An example is PMS

401 in the PEO Subs. Its purpose is to oversee the development of “submarine-unique

sonar systems” (Clements et al., 2006, p. 13). Clements et al., (2006) describe two

challenges faced in trying to foster this development.

Two particularly significant challenges to reuse included accommodating

1) a mix of management organizations responsible for fielding ASW
systems. Five PEOs from across the various Navy communities share
responsibility for ASW. Each oversees multiple contractors and labs under
individual program managers. In addition, the Office of Naval Research
and independent research labs also develop ASW software.

2) the varying nature of ASW within and across communities. The
operational tempo of the submarine differs from that of the surface ship
community. The air ASW mission has different operational concerns and
is split between fixed-wing and helicopter ASW platforms. While the
basics of ASW are similar across these communities, each perceived their
requirements as being sufficiently unique that they could not develop their
systems using common software. (p. 17)

Organizational constraints can have a significant effect on software reuse. Reuse

efforts can require significant investment and the benefits may not be immediately

achieved. Even within the Navy, taking advantage of software reuse between program

offices requires coordination and a willingness to accept potentially higher initial costs

for the achievement of future benefits.

38

In an effort to enhance this coordination among program offices that require ASW

software, an ASW Community of Interest (COI) was chartered in 2007. The purpose of a

COI within the Department of Defense is to “foster improved interoperability among

National Security Systems” (Program Executive Office—Integrated Warfare Systems

[PEO IWS], 2007, p. 1). The definition and role of a COI is described under Section B.2

of this chapter.

The ASW COI is described in its charter as an “institutional, cross-functional”

community (PEO IWS, 2007, p. 2). It is divided into two groups, the users group and the

developers group. The developers group is responsible for the acquisition and

engineering aspect of the COI. This includes “coordinated software development and

reuse” (PEO IWS, 2007, p. 2). Its goal is to provide a means of combining the efforts of

the various organizations that develop and use ASW software. This will foster

increased opportunities to develop products that have a greater potential for reuse. The

following program offices are represented in the developers group of the COI (PEO IWS,

2007, p. 2).

 PEO Integrated Warfare Systems (IWS)

 PEO Air ASW, Assault & Special Mission Programs (A)

 PEO Submarines

 PEO Littoral and Mine Warfare (LMW)

 PEO Command, Control, Communications and Information (C4I)

 Office of Naval Research (ONR)

 Warfare Centers with ASW responsibilities (no additional description

provided)

In addition, the COI includes an ASW Executive Steering Group (ESG) that will

handle the “day-to-day group activities” (PEO IWS, 2007, p. 2). Success of the COI will

be determined using defined metrics such as “time-to-market, software reuse, and the

number of entries into the DoD Metadata Registry” (PEO IWS, 2007, p. 4). Additional

39

metrics such as “operational performance, risk, and return on investment (ROI)” will be

incorporated when methodologies for measurement are established (PEO IWS, 2007,

p. 4). Data reflecting the success of these metrics was not available at the time of this

research.

Although still in the early stages, the establishment of an ASW COI illustrates a

desire to overcome the organizational issues that can hinder a reuse program. Gaining the

support of the top levels of management within the listed program offices could

substantially increase opportunities for planned reuse of ASW software. However, it will

also have to provide proof that such an effort is beneficial to all of the listed stakeholders.

In the development of ASW software, the Navy relies heavily on the expertise of

system integrators and contractors. Within many of these organizations, the opportunity

for reuse is substantial. At Lockheed Martin Maritime Systems and Sensors in Manassas,

Virginia, the presence of several programs that rely on ASW software provides an

opportunity for sharing of software. Labs used to develop and integrate software for the

submarine, surface, air, and surveillance communities are in close proximity and allow

for collaboration between developers. This may not correlate directly to cost savings for

the Navy, but seems to be the state of the practice.

Reuse within a single organization is not the only method currently available for

reuse. Examples also exist of sharing between contractors mandated by the program

office that maintains control over the developed software. One example is from PMS 425

within PEO Subs. They orchestrated the supply of several million lines of code to the

DDG-1000 program (R. Jackson, personal communication, March 23, 2009). However,

the status of this reuse was not available at the time of this research.

5. Benefits of Reuse

The actual costs associated with software reuse are largely quantifiable.

Conversely, benefits associated with the reuse of software components are not all as

quantifiable. Benefits can be both internal and external to an organization and have been

well documented in the literature. Generally, they include cost avoidance, improved

40

quality, and reduced development times (Mili et al., 2002, p. 6; Poulin et al., 1993, pp.

587–591). These benefits can also be applied to the stated goals of Department of

Defense software acquisitions.

a. Cost Avoidance

Cost avoidance in the Department of Defense is “a reduction or

elimination of some future resource requirement” (American Society of Military

Comptrollers [ASMC], 2008, p. 2.2.31). The concept of reuse cost avoidance was

introduced by Poulin et al., (1993). The most basic benefit is the actual cost savings from

reusing software. This is the most quantifiable aspect of benefits. If the costs of reuse are

lower than the costs of developing new software, then there is clearly a benefit to the

organization (Poulin et al., 1993, pp. 589–590) in reusing the software and the applicable

components should be reused.

More detailed analysis of this approach can be found in Poulin et al.,

(1993). In general, the cost avoidance is determined by finding the difference between the

additional cost in developing software for reuse and savings from reusing the software in

the design of future components and reduced service costs from using software that is of

greater quality.

 The equation describing this concept is illustrated below.

 RCA = ADC—DCA—SCA

 Where:

 RCA = Reuse Cost Avoidance

 ADC = Additional Development Cost

 DCA = Development Cost Avoidance

 SCA = Service Cost Avoidance

Fundamentally, this equation illustrates that the primary savings from

reusing software can be found in the reduction of future development costs and the costs

associated with maintenance and support. An organization that is successful in reusing

software should see reductions in costs such as RDT&E and maintenance. If tangible

41

benefits are not achieved, then perhaps the organization used incorrect assumptions or the

expected opportunities for reuse were not available.

In relation to the acquisition of Navy weapons systems, calculating cost

avoidance from software reuse is made more difficult by the lack of accurate data

representing the quantity of reuse. Development costs associated with previous systems

may have benefitted from the reuse of software, but meaningful data supporting this idea

are not readily available. Additionally, the shortcomings described previously in the use

of source lines of code and cost estimation models will also increase the inaccuracy of the

potential cost avoidance calculation.

b. Quality

Karlsson (1995) defines quality as “the ability of software to meet its

requirements” (p. 6). Although broad, this definition encompasses what decision makers

need to address when viewing software products. If the product fails to satisfy Karlsson’s

definition then it should not be considered. This can also refer to problems or bugs within

the software. Using a software component multiple times increases the likelihood that

any problems or issues with the software have been fixed. There are numerous definitions

of what pertains to quality within the literature. Each organization should determine its

own definition for a quality product within the context of their needs.

Improved quality for the Navy can have both tangible and intangible

benefits. An example of a tangible benefit is a reduction in corrective maintenance that

must be funded. GAO estimated spending to rework software systems at $8 billion,

representing 40 percent of the amount of money spent on software systems that year

(GAO, 2004, p. 1). Those numbers only represented money spent in research,

development, test, and evaluation. Support costs for software systems typically make up a

significant amount of the lifecycle costs, but were not included in the GAO estimate.

Thus improving the quality of the final product can result in actual cost savings to the

Navy.

42

c. Development Schedule

By taking maximum advantage of components that can be reused, an

organization can reduce the amount of time that it takes to develop a product. For private

industry this carries the advantage of getting products into the market at a more rapid

pace and saving money on labor costs (Mili, et al., 2002, p. 6). The Navy also stands to

gain similar benefits from reducing the amount of time that it takes to develop software

systems. Developing systems in a timelier manner can reduce overall production costs.

As stated earlier, the primary cost driver in the development of software systems is labor.

Reducing the amount of time that it takes to field a system will ultimately reduce labor

related costs.

In private industry, the benefit is an ability to get products into the market

faster, thus potentially enabling the company to sell more of the product. The Department

of Defense is primarily focused on the acquisition of products, thus the benefit comes

from reduced acquisition costs associated with development. Ensuring that a software

system is developed on time allows integration into the final product more rapidly. This

can help to ensure that the larger system is also delivered on time.

An intangible benefit of faster delivery is the introduction of capabilities

to operators more rapidly. This can aid in mission accomplishment and give personnel an

edge over adversaries. Although this is a benefit attributable to faster development time,

it is not one that is easily quantified.

6. Summary

Software reuse is a complex issue that requires an understanding of the associated

costs and benefits that can be achieved. There are different classifications of components

depending on whether they simply can be plugged into a new system or whether they

require additional modification and effort to reuse. Consideration must also be given to

whether they were developed in-house or purchased as commercial-off-the-shelf. Each

type carries with it costs that can affect the overall benefits achieved. Even when

components are chosen for reuse, there must still be an organizational strategy on how

43

reuse will be accomplished. Several models are available to determine cost avoidance

associated with reuse and development efforts that can be associated with reuse. Limited

benefits can be achieved by simply reusing code that is available, but more successful

examples of reuse require a process that is accepted and supported by all levels of an

organization.

It is unclear how to classify the current methods employed for ASW software

reuse. The state of the practice involves a reliance on contractors to leverage developed

assets across communities. Reuse is a practice that has become inherent in their

development processes. This has resulted in some successful efforts, but makes precise

cost avoidance associated with reuse difficult to determine. PEO IWS 5 estimates that an

APB developed for the submarine community may result in the following levels of reuse

(C. Davis, personal communication, February 10, 2009):

 Submarine to submarine: 97%

 Submarine to surveillance: 40%

 Submarine to surface: 25%

 Submarine to air: 15%

There are also estimates that the Navy has saved over $500 million from avoiding

the development of 4.5 million source lines of code (Clements et al., 2006, p. 29).

Clements et al., (2006) is an analysis conducted by the Software Engineering

Institute that compares the Navy’s APB process and subsequent management of ASW

software to that of the Product Line approach. The report finds multiple differences

between the APB process and a Software Product Line. However, it also recognized the

efforts of the Navy in its management of ASW software and the positive results that it has

been able to achieve thus far. This includes both economical and technical benefits.

44

THIS PAGE INTENTIONALLY LEFT BLANK

45

III. METHODOLOGY

A. GENERAL APPROACH

The following general approach was developed in order to determine whether the

Navy has achieved cost savings from the reuse of anti-submarine warfare sonar and fire

control software.

1. Determine the relationship between software reuse and the associated costs of
developing and maintaining software intensive systems.

a. Interviews with cost analysts, acquisition professionals, and software
engineers

b. Literature review

2. Determine the trend in the cost of software development related labor

a. Select applicable employment statistics from the Bureau of Labor
Statistics website

b. Determine the wages for software related labor and normalize to 2009
dollars

3. Select sonar and fire control systems for analysis

a. Normalize cost data to fiscal year 2008 dollars to provide a common
baseline for comparison

b. Segment costs potentially related to software reuse

4. Select research, development, test, and evaluation budget line items for analysis

a. Normalize cost data to fiscal year 2009 dollars to provide a common
baseline for comparison

b. Segment cost data for analysis

5. Identify trends in the funding streams

6. Provide observations and recommendations for future analysis

B. SOFTWARE DEVELOPMENT LABOR COSTS

As discussed in Chapter II, labor is the primary cost driver in the development of

computer software. In order to facilitate a proper analysis of the costs associated with

ASW software development, there must be an accompanying analysis of the trends

associated with this primary cost driver.

46

The following three occupations were chosen due to their relationship to the

development of computer software. All job descriptions were obtained from the

Occupational Employment Statistics (OES) section of the Bureau of Labor Statistics

(BLS) website (http://www.bls.gov).

 Computer Programmers: Convert project specifications and statements of
problems and procedures to detailed logical flow charts for coding into computer
language. Develop and write computer programs to store, locate, and retrieve
specific documents, data, and information.

 Computer Software Engineers—Applications: Develop, create, and modify
general computer applications software or specialized utility programs. Analyze
user needs and develop software solutions. Design software or customize software
for client use with the aim of optimizing operational efficiency. May analyze and
design databases within an application area, working individually or coordinating
database development as part of a team.

 Computer Software Engineers—Systems: Research, design, develop, and test
operating systems-level software, compilers, and network distribution software
for medical, industrial, military, communications, aerospace, business, scientific,
and general computing applications. Set operational specifications and formulate
and analyze software requirements. Apply principles and techniques of computer
science, engineering, and mathematical analysis.

After the three occupations were selected, National Mean Hourly Wage data for

1999 to 2007 were collected from the OES section of the BLS website. The wage data on

the site is given in then-year dollars and must be converted to a common year in order to

facilitate comparison and identify trends. All wages were converted 2009 dollars using

the Consumer Price Index (CPI) calculator, which is also located on the BLS website.

The data were then plotted versus the corresponding year to identify trends in the cost of

software development labor.

C. SONAR AND FIRE CONTROL SYSTEMS SELECTED FOR ANALYSIS

The primary reason for choosing the following sonar and fire control systems is

that they are recognized by PEO IWS 5—one the Navy program offices responsible for

undersea systems - as systems that have reused ASW software. They were also chosen

because of their levels of use within the submarine and surface communities. Although

other systems are still in limited use within each community, the researcher considered it

47

important to analyze the equipment that is being maintained and updated for continued

and future use. These systems are also being incrementally updated to take advantage of

new technology. For the submarine community, the AN/BQQ-10 Sonar System (ARCI)

and the AN/BYG-1 Submarine Combat Control System represent the baseline for the

development of future common systems. The future common surface ASW system has

not been identified, but the AN/SQQ-89 Surface Combat System represents a system that

is being updated based on advances in hardware and software technology.

Following the identification of the systems, maintenance and training data were

obtained through the Navy’s Visibility and Maintenance Operating Support Costs

(VAMOSC) database. Operating and Support Costs (O&S) were used for the following

time frames:

 AN/BQQ-10: fiscal years 2001 to 2007

 AN/BYG-1: fiscal years 2004 to 2007

 AN/SQQ-89: fiscal years 2000 to 2007

The data were provided by VAMOSC in fiscal year 2008 dollars. Data for each

system were then broken out by the following categories and descriptions. All

descriptions were obtained from the VAMOSC website (www.navyvamosc.com):

 Engineering and Technical Services (ETS): Cost of engineering and
technical services provided to support a shipboard system other than
during intermediate or depot availability. These services are provided by
Navy engineering activities or by contractors.

 Software Support: The cost of software maintenance and modification
for embedded computer software.

 Training NETPDTC (Naval Education and Training Professional
Development Technology Center): Cost of C,D, F, G, and T formal course
training for the ship’s crew, officer and enlisted to enable them to operate
and maintain a shipboard system.

 Training Program Office: The Program-Office funded costs of training
personnel to operate and maintain a shipboard system.

 Number of Systems: The total number of systems installed/utilized by the
Navy that are onboard ships that are in commission, as reported by
program offices.

48

 Personnel Trained—Program Office: The total number of sailors
trained during the fiscal year to operate and maintain a shipboard system.

 Personnel Trained—NETPDTC: The total number of sailors trained
during the fiscal year to operate and maintain a shipboard system.

Descriptions concerning the NCCA’s collection of the data are found in the

Shipboard Systems User Manual located on the VAMOSC website. A brief summary is

provided below.

ETS costs, software support costs, number of systems, training—program office,

and personnel trained—program office are provided by the program offices to the NCCA.

These costs are then compared to historical costs to identify deficiencies or anomalies

(Naval Center for Cost Analysis [NCCA], 2009). If significant discrepancies are found,

the provider is contacted for an explanation. Following any necessary clarifications, the

data are added to the VAMOSC database for the applicable system (NCCA, 2009).

Training costs and personnel reported from the NETPDTC are subjected to a

different process. The NETPDTC provides the number of graduates for each course

identification number (CIN) associated with the learning center, the number of instruction

days for each CIN, and the overall cost per instruction day of the learning center (NCCA,

2009). The NCCA then allocates the number of graduates and the costs of each course to

specific shipboard systems (NCCA, 2009). The applicability of each course to specific

shipboard systems is provided by the system’s program office.

1. Relationship to Software Reuse

These costs were chosen due to their potential relationship to software reuse.

However, costs or reduction in costs cannot be directly attributed to instances of software

reuse by the chosen systems. The data used will simply provide evidence as to whether

the current methods of development, which have been identified as taking advantage of

software reuse, have been successful in lowering maintenance and training costs.

49

a. ETS and Software Support Costs

As identified in previous chapters, instances of software reuse can result in

higher quality final products. The systems provided to the Navy are finished products, so

any quality gains should be realized in the development and testing phase. However,

reuse during the stages of system design and production could result in a higher quality

product being provided to the Navy. According to Clements et al., (2006), “a defect

found in an asset on one platform is tracked throughout the fleet. Then, fixes repair that

defect on all installed systems using the affected asset” (p. 29). Therefore lower support

costs could be achieved through more rapid identification and isolation of faults on

systems using similar assets.

b. Training

Training costs were chosen due to the increase in commonality that can

result from increased instances of reuse. In the literature, training typically refers to the

individuals developing software assets and not the end users. The researcher

acknowledges this and is exploring the possibility that as a specific warfare community

achieves greater commonality of shipboard systems, which can come through software

reuse, training costs may decrease.

2. Analysis

Once costs for each of the elements were separated, they were used to conduct the

following analysis:

 Trend analysis of total engineering and technical support (ETS) and
software support costs per unit per year

 Annual percentage change in ETS and software support costs per unit

 Trend analysis of total training costs per unit per year

 Trend analysis of training costs per individual trained

 Annual percentage change in training costs per unit

 Annual percentage change in training costs per individual trained

50

The goal of the analysis is to determine whether the trends indicate an increase or

decrease in the O&S costs. These results could then be potentially linked to software

reuse and provide evidence of successful reuse efforts.

a. Trend Analysis of ETS and Software Support Costs

Trend analysis was conducted on a cost per unit per fiscal year basis. For

this analysis, unit refers to the number of systems installed on U.S. Navy ships. The total

ETS and software support costs from the VAMOSC database were summed and divided

by the number of units of each system. This gave software related maintenance costs per

unit. The purpose of this conversion is to provide a common baseline of funding.

These values were then plotted against the year in which costs were

incurred. Costs per fiscal year are illustrated in graphical form in order to provide

evidence of trends.

b. Trend Analysis of Training Costs

The first trend analysis was done on a cost per unit per fiscal year basis.

For this analysis, unit refers to the number of systems installed on U.S. Navy ships. The

total training costs from the NETPDTC and program offices were summed and divided

by the number of units of each system. This provided training costs per unit. These values

were then plotted against the year in which the costs were incurred.

The second trend analysis was done on a cost per individual trained per

fiscal year basis. The total training costs from the NETPDTC and program offices were

summed and divided by the total number of personnel trained. This provided training

costs per individual trained. These values were then plotted against the fiscal year in

which the costs were incurred.

c. Annual Percentage Change

The annual percentage change of each of the cost categories was

calculated to provide additional evidence concerning either an increase or reduction in

costs. Percentage changes were computed for ETS and software support costs per unit,

51

training costs per unit, and training costs per individual trained. The annual percentage

change was calculated by subtracting previous fiscal year costs from the current year and

dividing by the previous year.

Annual Percentage Change = Current Year Costs—Prior Year Costs

 Prior Year Costs

3. Summary

This section provides additional details concerning the potential effect that

software reuse has on maintenance and training costs for selected submarine and surface

community ASW systems. The costs used in the analysis represent the total costs

attributed to each system in a given fiscal year. They are not directly representative of

costs or savings that can be attributed to reuse. What the analysis illustrates is whether

training and support costs associated with system software have been increasing or

decreasing on an annual basis.

D. BUDGET LINE ITEMS SELECTED FOR ANALYSIS

The decision to use only R-1 budget line items from the RDT&E portion of the

budget is based on the belief that a significant portion of the costs of a software system

are incurred in the development and testing phase. In selecting the specific budget items,

only programs related to anti-submarine warfare sonar and fire control software were

chosen. Rationale for choosing the programs came from analysis of the Exhibit R-2

mission description and budget item justification and the project cost analysis in Exhibit

R-3. Funding data selected for analysis are from fiscal years 2000 to 2008.

RDT&E costs are also separated into budget activities (BA). BAs are numbered

from one to seven and correspond to different types of RDT&E. The Department of

Defense Financial Management Regulation (DoD FMR) (2008) Volume 2B Chapter 5

provides a description of each BA. The only BA categories used in this research are BA

2, 3, 4, 5, and 7. Brief descriptions of BAs 2, 3, 4, 5, and 7 are provided below.

52

 Budget Activity 2, Applied Research: Applied research is systematic
study to understand the means to meet a recognized and specific need. It is
a systematic expansion and application of knowledge to develop useful
materials, devices, and systems or methods. Applied research may
translate promising basic research into solutions for broadly defined
military needs, short of system development. The dominant characteristic
is that applied research is directed toward general military solutions and
determining their parameters.

 Budget Activity 3, Advanced Technology Development: This BA
includes development of subsystems and component and efforts to
integrate subsystems and components into system prototypes for field
experiments and/or tests in a simulated environment. Advanced
Technology Development demonstrates the general military utility or cost
reduction potential of technology when applied to different types of
military equipment or techniques. Projects in this category do not

necessarily lead to subsequent development or procurement phases, but
should have the goal of moving out of Science and Technology and into
the acquisition process.

 Budget Activity 4, Advanced Component Development and
Prototypes (ACD&P): The ACD&P phase includes system specific
efforts that help expedite technology transition from the laboratory to
operational use. Emphasis is on proving component and subsystem
maturity prior to integration in major and complex systems.

 Budget Activity 5, System Development and Demonstration (SDD):
SDD programs conduct engineering and manufacturing development tasks
aimed at meeting validated requirements prior to full rate production. The
SDD phase involves the development, integration, and demonstration of
mature systems.

 Budget Activity 7, Operational System Development: This BA includes
development efforts to upgrade systems that have been fielded or have
received approval for full rate production.

1. Individual Budget Items Selected

The following process was utilized in determining the RDT&E budget items to be

used in the analysis.

First, a search was conducted to identify budget line items related to the anti-

submarine warfare mission. The search was conducted within the Department of the

53

Navy Budget located on the Assistant Secretary of the Navy (ASN) Financial

Management & Comptroller (FM&C) website, http://www.finance.hq.navy.mil.

Potential items were then analyzed to determine if they were specifically related

to the development of products in support of shipboard systems. This was done through

analysis of the Exhibit R-2 budget item justification and mission description of each

program. The goal of this analysis was to ensure that the funds allocated were being used

in support of anti-submarine warfare sonar or fire control related systems.

Once the determination was made that the line item was directed towards anti-

submarine warfare, the cost categories within Exhibit R-3, RDT&E project cost analysis,

were used to determine the applicability to software development.

Not all cost categories specifically refer to software development. Nomenclature

used within Exhibit R-3 varies. Only costs specifically identified as hardware were

eliminated from consideration in the software cost analysis. Software related costs were

then separated from the total costs of the program elements being analyzed. The

following categories of costs were eliminated to differentiate between software and total

costs:

 Primary Hardware Development

 Ancillary Hardware Development

 Tech Insertions (TI)

 Miscellaneous

 Award Fees

 Any costs considered classified and not explained within Exhibit R-2 or
R-3

All other costs in Exhibit R-3 associated with product development, support, test

and evaluation, and management are included.

When the software related costs were determined, they were recorded at their

actual value and normalized to fiscal year 2009 dollars (FY09$) using the RDT&E

(purchase) appropriation from the Naval Center for Cost Analysis (NCCA) inflation

calculator (February 2009 edition).

54

Every effort was made to ensure that these costs represented actual values. This

was done by using the most up to date data available. For example, fiscal year 2006 data

were taken from the fiscal year 2009 budget, which was submitted in February 2008.

RDT&E funding is available for obligation for a period of only two years. Thus all

obligated fiscal year 2006 funds should be recorded in the fiscal year 2009 budget.

The researcher acknowledges that the costs associated with these programs may

not correlate directly to actual reuse efforts. The purpose of using these data is to identify

any trends in the RDT&E stages of anti-submarine warfare sonar and fire control

software development. If processes in place to reuse anti-submarine warfare are

successful, there should be a downward trend in the allocation of funding toward the

development of such systems. However, even these trends may not exclusively represent

successful reuse efforts.

A relationship may also exist between the funding profiles of each item. The

items chosen are not inclusive of all efforts toward the development of anti-submarine

warfare sonar and fire control software. They were chosen due to their direct relationship

with developing sonar and fire control systems and because they have maintained a

steady stream of resources for a significantly long period of time to facilitate analysis.

The following budget items were selected based on the reasons discussed above.

They are listed by budget activity and program element. A brief description taken from

the fiscal year 2009 Department of the Navy (DoN) Budget is also provided.

 Budget Activity (BA)—4, Program Element 0603561N/Advanced
Submarine System Development—Project Unit 0223/Sub Combat
System Improvement (ADV): This budget item provides funding for the
development of the submarine community’s Advanced Processing Builds
(APBs) described in Chapter II. APBs are software only updates
developed for integration into existing shipboard systems. They include
both acoustic (sonar) and tactical (fire control) software development.
According to Exhibit R-2a for fiscal year 2009, “APBs develop and
demonstrate improvements to current and future sonar/combat control
systems” (Department of the Navy Financial Management and
Comptroller [DoN FM&C], 2008).

55

 Budget Activity (BA)—4, Program Element 0603553N/Surface
ASW—Project Unit 1704/Undersea Warfare: According to the fiscal
year 2009 Exhibit R-2 description, this budget item provides funding for
“advanced development demonstration and validation of technology for
potential surface sonar and combat system applications” (DoN FM&C,
2008). The goal is to identify technology that can be implemented into
surface ASW sonar and fire control systems.

 Budget Activity (BA)—5, Program Element 0604261N/Acoustic
Search Sensors—Project Unit 0480/ASW Sensors & Processors: The
fiscal year 2009 Exhibit R-2 description explains that this budget item
provides funding to “improve the mission effectiveness of airborne ASW
platforms in cueing, search, localization, and track” (DoN FM&C, 2008).
The goal is to provide solutions that better enable the detection,
classification, and tracking of submarines.

 Budget Activity (BA)—5, Program Element 0604503N/Submarine
System Equipment Development—Project Unit 0219/Sub Sonar
Improvement (ENG): This budget item provides funding to develop and
deliver updates to existing submarine sonar systems. Part of the funding is
used to integrate the software upgrades developed by the APB process.
The remainder is used for the development of hardware for the
Technology Insertions (TI) described in Chapter II.

 Budget Activity (BA)—5, Program Element 0604562N/Submarine
Tactical Warfare System—Project Unit 0236/SSN Comb Cont Sys
Imprvmnt (ENG): This budget item provides funding to develop and
deliver updates to existing submarine fire control systems, specifically the
AN/BYG-1 combat control system. Part of the funding is used to integrate
the software upgrades developed by the APB process. The remainder is
used for the development of hardware for the Technology Insertions (TI)
described in Chapter II

 Budget Activity (BA)—7, Program Element 0205620N/Surface ASW
Combat System Integration—Project Unit 0896/AN/SQQ-89
Modification and Budget Activity (BA)—7, Program Element
0205620N/Surface ASW Combat System Integration—Project Unit
1916/Surface ASW System Improvement: These budget items provide
funding to develop and integrate software upgrades for the AN/SQQ-89
system. According to the description, the two items will be combined in
future budgets under project unit 1916. For this research the total costs of
each are combined.

56

Following the selection of the budget items and the normalization of cost data to

fiscal year 2009 dollars, analysis of the funding streams was conducted to determine the

following:

 Trends in the RDT&E costs for each budget line item

 Annual percentage change in funding for each budget line item

 Trend in total costs for the six items selected

2. Relationship to Software Reuse

One of the potential benefits associated with software reuse is reduced

development costs (GAO, 1993, p. 5). This can come in the form of shorter development

time and greater productivity. Therefore, the use of RDT&E funding data is appropriate

when trying to determine benefits associated with software reuse.

However, a lack of empirical data representing the extent of reuse within and

between the various program elements is a significant shortcoming in the analysis. Any

conclusions drawn from analysis of these data may not represent only the effect of

software reuse. Other factors may have been instrumental in reductions or increases in the

yearly expenditures associated with each budget item.

The data chosen are also not all inclusive of potential anti-submarine warfare

related sonar and fire control costs and do not reflect all potential areas of software reuse.

However, the budget items chosen represent elements that have received consistent

funding and support software upgrades to existing systems.

3. Analysis

Following the determination and segregation of costs, trend analysis and

computation of annual percentage change of RDT&E costs was conducted.

a. Trend Analysis

Trend analysis was conducted by plotting the RDT&E funding in fiscal

year 2009 dollars for each budget line item against the fiscal year in which the funding

57

occurred. Once the funding stream was plotted, a linear trend line was drawn to

determine the trend in spending over time. A downward trend in funding may be

indicative of savings that can be attributed to the reuse of software within the program.

b. Annual Percentage Change

The average yearly change of each of the cost categories was calculated to

provide additional evidence of either an increase or decrease in costs. Averages were

computed separately for each RDT&E cost. The average percentage change was

calculated by subtracting previous fiscal year costs from the current year and dividing by

the previous year. An average of these percentages was then taken to determine the

average annual percentage change.

Annual Percentage Change = Current Year Costs—Prior Year Costs

 Prior Year Costs

4. Total Sonar and Fire Control Costs

One of the future endeavors in the ASW community is the implementation of an

Anti-Submarine Warfare (ASW) Community of Interest (COI). The purpose of this

section is to identify fiscal year 2008 and fiscal year 2009 RDT&E funding related to

sonar and fire control systems that support the ASW mission. Costs are not segregated in

this section and both hardware and software related costs are included. The purpose is to

provide an indication of the amount of funding that is currently being allocated to ASW

sonar and fire control systems within the RDT&E budget. Depending upon the level of

funding, it may indicate whether such collaboration is worthwhile. No minimum or

maximum threshold has been identified.

The R-1 budget items applicable to developing technology to support sonar and

fire control systems were determined by reviewing Exhibit R-2 budget item justifications

and mission descriptions. Only budget items that develop technology for ASW sonar and

fire control systems were used.

58

Fiscal year 2008 costs were normalized to fiscal year 2009 dollars using the

NCCA inflation calculator (February 2009 edition). The budget activity, program

element, project title, and funding are displayed in table form in Chapter IV.

5. Summary

The costs used for analysis in this section were extracted from RDT&E budget

data associated with ASW software development for the submarine, surface, air, and

surveillance communities. Data were analyzed to determine any trends in the funding

streams within each of the programs and the total funding related to developing sonar and

fire control systems.

Based on anecdotal evidence concerning the reuse of ASW software, the

expectation is that software related RDT&E costs will exhibit a downward trend. A

downward trend in funding could be indicative of cost savings. However, it is important

to note that any increases or decreases in funding could be influenced by other factors

related to the budget process. This includes events such as congressional additions and

reprogrammings. Therefore, any trends identified may not be directly related to software

reuse.

Determination of total RDT&E funding for sonar and fire control related systems

is meant to illustrate how much money is spent on these systems. In 2007, a charter was

signed to establish the ASW COI. The information gathered from this analysis may

provide evidence of the extent of the funding involved in the collaboration and allow for

more informed decision making.

59

IV. RESULTS FROM ANALYSIS OF THE DATA

This section presents the results of investigating cost savings associated with the

reuse of anti-submarine warfare sonar and fire control software. The results explained

below are representative of trend analysis conducted on labor, maintenance, training, and

RDT&E costs associated with the development and sustainment of ASW related

software.

A. SOFTWARE RELATED WAGES

As stated in Chapter II, the primary cost driver in the development and support of

software is labor. Figures 2, 3, and 4 illustrate the trend in the national mean hourly

wages from 1999 to 2007 for Computer Programmers, Computer Software Engineers -

Applications, and Computer Software Engineers—Systems Software, respectively. Table

1 illustrates the three areas of employment, as well as the national mean hourly wage

associated with each profession from 1999 to 2007. Wages in 2009 dollars are shown in

parentheses. Although the data do not exhibit a well-behaved linear trend, there is a

general movement in the upward direction. The largest increases are from 1999 to 2000

and from 2003 to 2004. The largest decrease occurs from 2005 to 2006.

Overall, the wages for each occupation have increased from their 1999 levels.

Specific reasons for the year-to-year changes are not within the scope of this research.

The purpose of displaying these data is to illustrate that the cost of labor has increased

over the time period of the analysis.

60

Figure 2. National Mean Hourly Wage for Computer Programmers from the Bureau of
Labor Statistics Occupational Employment Statistics (Adjusted to 2009 dollars

using the Consumer Price Index) vs. Year

Figure 3. National Mean Hourly Wage for Computer Software Engineers - Applications
from the Bureau of Labor Statistics Occupational Employment Statistics

(Adjusted to 2009 dollars using the Consumer Price Index) vs. Year

61

Figure 4. National Mean Hourly Wage for Computer Software Engineers - Systems
from the Bureau of Labor Statistics Occupational Employment Statistics

(Adjusted to 2009 dollars using the Consumer Price Index) vs. Year

Year Computer Programmers Computer Software
Engineers—
Applications

Computer Software
Engineers—Systems
Software

1999 $26.42 ($33.73) $31.62 ($40.37) $31.84 ($40.65)

2000 $30.23 ($36.20) $33.80 ($41.75) $34.80 ($42.99)

2001 $30.23 ($36.31) $34.79 ($41.79) $35.81 ($43.01)

2002 $30.62 ($36.20) $35.48 ($41.95) $36.46 ($43.11)

2003 $31.01 ($35.85) $36.42 ($42.10) $37.69 ($43.57)

2004 $35.24 ($39.68) $39.04 ($43.96) $40.94 ($46.10)

2005 $37.22 ($40.54) $40.09 ($43.66) $42.22 ($45.98)

2006 $33.42 ($35.26) $39.42 ($41.59) $41.95 ($44.26)

2007 $34.62 ($35.52) $41.18 ($42.25) $43.65 ($44.78)

Table 1. National Mean Hourly Wages for Software Development Jobs from the
Bureau of Labor Statistics (Wages in 2009 dollars are in parentheses)

62

B. MAINTENANCE COSTS

Overall, the three systems selected for analysis, the AN/BQQ-10 sonar system,

the AN/SQQ-89 surface combat system, and the AN/BYG-1 combat control system

exhibit downward trends in the annual maintenance expenditures per unit in service.

Costs were analyzed beginning with fiscal year 2000 or the earliest available data from

the Navy’s VAMOSC database. The following sections explain the results of the analysis

for each system. The annual maintenance costs per unit were plotted per fiscal year for

the AN/BQQ-10 sonar system, the AN/SQQ-89 surface combat system, and the

AN/BYG-1 combat control system, respectively.

The actual cost values and number of units are considered government and

business sensitive and have been removed.

1. AN/BQQ–10 Sonar System

The AN/BQQ–10 annual software related maintenance costs for fiscal years 2001

to 2007 are illustrated in Figure 5. As expected, the AN/BQQ–10 cost data exhibit a

downward trend in the annual software related maintenance costs. Note that the cost trend

for the last four years differs significantly from the first three years. The downward slope

for fiscal years 2004 to 2007 is not as great and the costs are higher than 2003, but more

in line with 2002. The primary reason for this disparity is the absence of any Engineering

and Technical Services (ETS) costs for fiscal year 2003. The VAMOSC website includes

a section that explains discrepancies and anomalies for data, but no explanation is given.

Therefore, either no cost was incurred, or no data were provided. The same issue exists

for fiscal year 2002 software support data. This lack of data helps to explain the unusual

shape of the plot.

The AN/BQQ–10 annual percentage changes for software related maintenance

costs for fiscal years 2001 to 2007 are illustrated in Table 2. The table begins in fiscal

year 2002 because no data prior to fiscal year 2001 are available. A negative sign

indicates a reduction in costs for the previous fiscal year. With the exception of fiscal

year 2004, each year exhibits a decrease in costs. The discrepancy in ETS data for fiscal

63

year 2003 described above explains the large percentage increase from fiscal year 2003 to

fiscal year 2004 as well as the large percentage decrease from fiscal year 2002 to fiscal

year 2003. The discrepancy in software support data for fiscal year 2002 also helps to

explain the larger than average change from fiscal year 2001 to fiscal year 2002. Taking

the average percentage change from fiscal years 2004 to 2007 gives a value of -12.04%,

which is more consistent with the overall trend displayed in the graph.

Figure 5. AN/BQQ–10 Software Support and Engineering and Technical Services Cost
per Unit (FY08$) vs. Fiscal Year

Fiscal Year Annual Percentage
Change

2001 ---
2002 -57.58%
2003 -89.77%
2004 1144.66%
2005 -10.69%
2006 -15.64%
2007 -9.78%

Average 160.20%

Table 2. AN/BQQ–10 Software Support and Engineering and Technical Services
Cost per Unit (FY08$) Annual Percentage Change

64

2. AN/SQQ–89 Surface Combat System

The AN/SQQ–89 annual software related maintenance costs for fiscal years 2000

to 2007 are illustrated in Figure 6. The data exhibit a well-behaved downward linear

trend. The only exception to this trend is fiscal year 2004, where there was a slight

increase in costs.

The AN/SQQ–89 annual percentage changes for software related maintenance

support costs for fiscal years 2000 to 2007 are illustrated in Table 3. The data in this table

also support the trends in lowering costs per system. For the time period analyzed, annual

maintenance expenditures per unit decreased by an average of 13.31 percent.

Figure 6. AN/SQQ–89 Software Support and Engineering and Technical Services Cost
per Unit (FY08$) vs. Fiscal Year

65

Fiscal Year Annual Percentage
Change

2000 ---
2001 -23.53%
2002 -15.46%
2003 -10.32%
2004 10.58%
2005 -16.31%
2006 -0.62%
2007 -37.50%

Average -13.31%

Table 3. AN/SQQ–89 Software Support and Engineering and Technical Services
Cost per Unit (FY08$) Annual Percentage Change

3. AN/BYG–1 Combat Control System

The AN/BYG–1 annual software related maintenance costs for fiscal years 2004

to 2007 are illustrated in Figure 7. As expected, the cost data exhibit a downward trend.

The large drop in costs from fiscal year 2006 to fiscal year 2007 is explained on the

VAMOSC website and is due to a change in how the program office allocated and

reported costs. This resulted in a large decrease in the ETS costs for fiscal year 2007

compared to prior years (Naval Center for Cost Analysis [NCCA], 2009a). No retroactive

changes to the data were made to reflect the effect that this change would have on

previous years. This is described in the FY94—FY08 Ships Anomalies documentation on

the VAMOSC site.

The AN/BYG–1 annual percentage changes for software related maintenance

support costs for fiscal years 2004 to 2007 are illustrated in Table 4. The data in this table

also support the trend in lowering costs per system. One discrepancy in the data is the

large decrease from fiscal year 2006 to fiscal year 2007. This change is due to the

decrease in ETS costs described in the previous paragraph. For the time period analyzed,

annual software related maintenance expenditures per unit decreased by an average of

60.41 percent.

66

Figure 7. AN/BYG–1 Software Support and Engineering and Technical Services Cost
per Unit (FY08$) vs. Fiscal Year

Fiscal Year Annual Percentage
Change

2004 ---
2005 -64.51%
2006 -30.53%
2007 -86.19%

Average -60.41%

Table 4. AN/BYG–1 Software Support and Engineering and Technical Services
Cost per Unit (FY08$) Annual Percentage Change

67

4. Summary

The data analyzed for the AN/BQQ–10, AN/SQQ-89, and AN/BYG–1 systems

illustrate downward trends as expected. Figure 5, the graph of AN/BQQ–10 software

related maintenance costs is difficult to interpret due to the lack of costs associated with

ETS in fiscal year 2003 and software support in fiscal year 2002. The reason for the

absence of these costs is not explained. However, from fiscal year 2004 to fiscal year

2007 the data behave as expected and illustrate a downward trend. Table 2, the annual

percentage change in costs for the AN/BQQ–10 also reflects this trend.

The data for the AN/SQQ–89 software related maintenance costs shown in Figure

6 exhibit a well-behaved downward linear trend. Costs decreased consistently with the

exception of fiscal year 2004, where they exhibited a slight increase. The annual

percentage changes in costs, shown in Table 3, also illustrate an overall reduction in

maintenance costs per system.

Data for the AN/BYG–1 software related maintenance costs shown in Figure 7

also illustrate a clear downward trend. The significant decrease from fiscal year 2006 to

fiscal year 2007 is explained by the VAMOSC website as a change in the allocation and

reporting of costs by the program office. This resulted in a significant decrease in ETS

costs. No data were provided to determine the effect of this change on previous years.

The annual percentage change in costs, shown in Table 4, also illustrates an overall

reduction in maintenance costs per system.

C. TRAINING COSTS

The three systems selected for analysis, the AN/BQQ–10 sonar system, the

AN/SQQ–89 surface combat system, and the AN/BYG-1 combat control system exhibit

varying trends in the annual training costs per unit in service and per individual trained.

Costs associated with the AN/BQQ–10 have been increasing, while costs for the

AN/SQQ–89 and AN/BYG–1 have been decreasing. Costs were analyzed beginning with

fiscal year 2000 or the earliest available data from the Navy’s VAMOSC database. The

following sections explain the results of the analysis for each system. The annual training

68

costs per unit and per individual trained were plotted per fiscal year for the AN/BQQ–10

sonar system, the AN/SQQ–89 surface combat system, and the AN/BYG-1 combat

control system, respectively.

The actual cost values and number of units are considered government and

business sensitive and have been removed.

1. AN/BQQ–10 Sonar System

The AN/BQQ–10 training costs per unit for fiscal years 2001 to 2007 are

illustrated in Figure 8. The costs initially decreased, but from fiscal years 2002 to 2007

they have exhibited a steady upward linear trend. Although this is contrary to the

expected trend, it is indicative of a factor that was not initially anticipated. As more

systems are installed on ships, they replace existing systems. Costs are allocated to each

system based upon the costs of the learning center and the instruction days and number of

graduates associated with a specific system. Therefore, as the number of systems

increases, the number of required courses increases, and the fixed costs allocated to that

system may also increase. During the time period analyzed, the AN/BQQ–10 has been

replacing other existing shipboard sonar systems. Allocating all of the costs of sonar

related courses to the AN/BQQ–10 instead of dispersing them among several systems

may explain the appearance of rising training costs per unit.

The AN/BQQ–10 training costs per individual trained for fiscal years 2001 to

2007 are illustrated in Figure 9. The costs exhibit an upward linear trend with the

exception of fiscal year 2001 and fiscal year 2005. The reason for this disparity appears

to be the number of personnel trained. The number of individuals trained for these two

years is illustrated in Table 6, and was significantly lower than the other years analyzed.

Fiscal year 2006 and fiscal year 2007 indicate that the cost per individual is beginning to

stabilize. The overall rise in costs can also be explained by the situation described in the

previous paragraph. As the number of systems increases, the allocation of fixed costs to a

specific system may also increase.

69

Table 5 and Table 6 illustrate the annual percentage change for training cost per

unit and training cost per individual trained, respectively. The data are consistent with

the results displayed on Figures 8 and 9.

Figure 8. AN/BQQ–10 Training Costs per Unit (FY08$) vs. Fiscal Year

Fiscal Year Annual Percentage Change
2001 -----
2002 -72.15%
2003 86.96%
2004 48.17%
2005 30.05%
2006 23.72%
2007 32.58%

Average 24.89%

Table 5. AN/BQQ–10 Training Costs per Unit (FY08$) Annual Percentage Change

70

Figure 9. AN/BQQ–10 Training Costs per Individual Trained (FY08$) vs. Fiscal Year

Fiscal Year Annual Percentage
Change

2001 -----
2002 -84.38%
2003 46.34%
2004 63.93%
2005 241.42%
2006 -59.59%
2007 5.13%

Average 35.48%

Table 6. AN/BQQ–10 Training Costs per Individual Trained (FY08$) Annual
Percentage Change

71

2. AN/SQQ–89 Combat Control System

The AN/SQQ–89 training costs per unit for fiscal years 2000 to 2007 are

illustrated in Figure 10. Overall, the costs exhibit a downward trend. However, there is

significant variation in the annual costs. Table 7, the annual percentage change in the

costs illustrates this variation. Although the average for fiscal years 2000 to 2007 is a

0.37 percent decrease, annual changes range from a 50.17 percent increase to a 34.21

percent decrease.

The AN/SQQ–89 training costs per individual trained for fiscal years 2000 to

2007, illustrated in Figure 11, exhibit a much more defined trend. The costs decrease

exponentially and appear to have steadied. The annual percentage changes, illustrated in

Table 8, further show this downward trend. Overall costs decreased by an average of

12.14 percent. Like the AN/BQQ–10, the highest costs per individual trained occurred in

years where the fewest personnel were trained.

72

Figure 10. AN/SQQ–89 Training Costs per Unit (FY08$) vs. Fiscal Year

Fiscal Year Annual Percentage Change
2000 -----
2001 -34.21%
2002 -2.70%
2003 50.10%
2004 -23.71%
2005 5.54%
2006 -23.07%
2007 25.45%

Average -0.37%

Table 7. AN/SQQ–89 Training Costs per Unit (FY08$) Annual Percentage Change

73

Figure 11. AN/SQQ–89 Training Costs per Individual Trained (FY08$) vs. Fiscal Year

Fiscal Year Annual Percentage
Change

2000 -----
2001 -34.58%
2002 -19.19%
2003 -21.66%
2004 -10.96%
2005 -3.30%
2006 2.63%
2007 2.08%

Average -12.14%

Table 8. AN/SQQ–89 Training Costs per Individual Trained (FY08$) Annual
Percentage Change

74

3. AN/BYG–1 Combat Control System

The AN/BYG–1 training costs per unit for fiscal years 2004 to 2007 are

illustrated in Figure 12. Overall, the shape of the curve exhibits an exponential decrease

with costs steadying during the last three years. Table 9, the annual percentage change in

training costs per unit illustrates this downward trend. On average, costs have decreased

by 36.94 percent.

AN/BYG–1 training costs per individual trained for fiscal years 2004 to 2007,

illustrated in Figure 13, initially increased significantly, but have exhibited a well-

behaved downward linear trend from fiscal years 2005 to 2007. Again, the cost per

individual trained appears to decrease as the number of personnel trained increases. Table

10, annual percentage change in costs per individual trained, supports this conclusion.

Although the average of the data analyzed illustrates an increase of 11.94 percent, this

number is skewed by the 90.82 percent increase from fiscal year 2004 to fiscal year 2005.

Figure 12. AN/BYG–1 Training Costs per Unit (FY08$) vs. Fiscal Year

75

Fiscal Year Annual Percentage
Change

2004 -----
2005 -71.59%
2006 -24.44%
2007 -14.78%

Average -36.94%

Table 9. AN/BYG–1 Training Costs per Unit (FY08$) Annual Percentage Change

Figure 13. AN/BYG–1 Training Costs per Individual Trained (FY08$) vs. Fiscal Year

Fiscal Year Annual Percentage
Change

2004 -----
2005 90.82%
2006 -30.78%
2007 -24.21%

Average 11.94%

Table 10. AN/BYG–1 Training Costs per Individual Trained (FY08$) Annual
Percentage Change

76

4. Summary

The three systems analyzed illustrated varying trends in both the training costs per

unit and training costs per individual trained. The AN/BQQ–10 exhibited a well-behaved

upward linear trend in training costs per unit and a less defined upward trend in training

costs per individual trained. The AN/SQQ–89 exhibited no significant trends in training

costs per unit, but exhibited an exponential decrease in training costs per individual

trained. The AN/BYG–1 exhibited an exponential decrease in costs per unit and a well-

behaved downward linear trend from fiscal years 2005 to 2007 for training costs per

individual trained.

A common factor in the costs for each system is that costs per individual trained

decrease as more personnel are trained. This suggests that the fixed costs of operating the

training courses are the primary cost drivers. As output increases, the cost per unit of

output is lower. The results of this analysis also seem to indicate that costs can only be

decreased to a certain level. Therefore, greater commonality of systems will be successful

in reducing training costs to the point where it can reduce the fixed costs of operating

courses.

Another important note is the trend illustrated by Figure 8, the AN/BQQ–10

training costs per unit. As the number of units increased, the costs per unit increased. This

may be due to the allocation of fixed costs associated with operating the training centers.

Therefore, using cost per unit may not be a good indication of the effect of commonality

on training costs until all systems have been converted. A better analysis would

concentrate on the total cost required to train sonar operators across the fleet.

D. RESEARCH, DEVELOPMENT, TEST, AND EVALUATION COSTS

Overall, the costs for the following RDT&E budget items exhibit varying trends

in funding.

 Budget Activity (BA)– 4, Program Element 0603561N/Advanced
Submarine System Development—Project Unit 0223/Sub Combat System
Improvement (ADV)

77

 Budget Activity (BA)—4, Program Element 0603553N/Surface ASW—
Project Unit 1704/Undersea Warfare

 Budget Activity (BA)—5, Program Element 0604503N/Submarine
System Equipment Development—Project Unit 0219/Sub Sonar
Improvement (ENG)

 Budget Activity (BA)—5, Program Element 0604562N/Submarine
Tactical Warfare System—Project Unit 0236/SSN Comb Cont Sys
Imprvmnt (ENG)

 Budget Activity (BA)—5, Program Element 0604261N/Acoustic Search
Sensors—Project Unit 0480/ASW Sensors & Processors

 Budget Activity (BA)—7, Program Element 0205620N/Surface ASW
Combat System Integration—Project Unit 0896/AN/SQQ-89 Modification
and Budget Activity (BA)—7, Program Element 0205620N/Surface ASW
Combat System Integration—Project Unit 1916/Surface ASW System
Improvement

RDT&E costs were analyzed due to the belief that this is the phase of production

where software reuse would have the most significant effect. This belief was developed

through interviews and a literature review. Empirical data relating to specific cost

avoidance from software reuse within each program were not available. General

percentages of reuse from the APBs developed under Program Element 0603561N/

Advanced Submarine System Development were estimated by PEO IWS 5, but do not

necessarily reflect actual reuse percentages. Therefore the data used for analysis do not

take into account specific instances of software reuse. Increases and decreases in funding

from year to year may have been affected by other factors not related to software reuse.

Also, as discussed in Chapter II, software reuse may not result in savings. Depending on

the information related to the assets available and how they are reused, software reuse has

the potential to increase costs.

The analysis conducted simply uses available cost data and anecdotal evidence

that software reuse does occur at some level within the programs chosen and identifies

trends in the funding. Actual effects of software reuse may be different than the trends

exhibited by the data. The following sections explain the results of the analysis for each

program element.

78

1. Trend Analysis of RDT&E Costs

a. Program Element 0603561N/Advanced Submarine System
Development

Trends in the RDT&E costs for Program Element 0603561N/Advanced

Submarine System Development—Project Unit 0223/Sub Combat System Improvement

(ADV) for FY 2000 to 2008 are illustrated in Figure 14. As expected they exhibit a

downward trend. Two notable exceptions are fiscal years 2004 and 2005. Funding for the

program experienced a significant decrease in fiscal year 2004 and a subsequent increase

in fiscal year 2005. The fiscal year 2004 decrease was due to a reprogramming of

$32,655,000 and illustrates one of the other factors that can affect program funding (DoN

FM&C, 2003).

Results of the annual percentage change in funding are displayed in Table

11. The table illustrates large variations in the year-to-year funding. There are examples

of large increases and large decreases from year to year. Although the trend in costs

appears to be in the downward direction, the average annual percentage change in annual

funding is a 0.68 percent increase.

Figure 14. Program Element 0603561N/Advanced Submarine System Development—
Project Unit 0223/Sub Combat System Improvement (ADV) RDT&E Costs

(FY09$) per Fiscal Year

79

Fiscal Year RDT&E Cost (FY09$) Annual Percentage Change

2000 $91,661,440 ------
2001 $79,175,646 -13.62%
2002 $70,729,533 -10.67%
2003 $80,191,460 13.38%
2004 $29,098,167 -63.71%
2005 $47,967,494 64.85%
2006 $64,014,113 33.45%
2007 $56,843,747 -11.20%
2008 $52,767,820 -7.17%

Average $91,661,440 0.66%

Table 11. Program Element 0603561N/Advanced Submarine System
Development—Project Unit 0223/Sub Combat System Improvement (ADV)

RDT&E Costs (FY09$) and Annual Percentage Change

b. Program Element 0603553N/Surface ASW

Trends in the RDT&E costs for Program Element 0603553N/Surface

ASW—Project Unit 1704/Undersea Warfare for fiscal years 2000 to 2008 are illustrated

in Figure 15. Overall, the costs analyzed exhibit an upward trend. This is not the

anticipated result. However, the large increases in funding beginning in fiscal year 2004

can be traced to the incorporation of at-sea testing of the products developed. Further

investigation revealed the results of Table 12, which exhibit the annual costs of

incorporating at-sea testing into the program. There are also three distinct portions of the

graph. From fiscal years 2000 to 2003, the costs exhibit a downward trend. From fiscal

years 2004 to 2006, they exhibit a linear increase and from fiscal years 2006 to 2008,

they appear to again be decreasing.

Results of the annual percentage change in funding are displayed in Table

13. The table illustrates that there have been large variations in the annual funding for this

program. The average of the annual percentage changes is 36.50 percent, which is a

significant increase from year to year.

80

Figure 15. Program Element 0603553N/Surface ASW—Project Unit 1704/Undersea
Warfare RDT&E Costs (FY09$) per Fiscal Year

Fiscal Year Cost of At-Sea Testing
(FY09$)

Percent of Total Costs

2004 $10,307,274 78.23%
2005 $16,265,390 85.81%
2006 $26,391,465 92.19%
2007 $16,141,882 55.83%
2008 $20,656,265 81.36%

Table 12. Annual Costs of At-Sea Testing (FY09$) for Program Element
0603553N/Surface ASW—Project Unit 1704/Undersea Warfare and Percent of

Total Costs per Fiscal Year

81

Fiscal Year RDT&E Cost (FY09$) Annual Percentage Change
2000 $8,040,708 ------
2001 $8,462,084 5.24%
2002 $4,128,201 -51.22%
2003 $3,586,632 -13.12%
2004 $13,176,251 267.37%
2005 $18,956,113 43.87%
2006 $28,628,735 51.03%
2007 $28,914,029 1.00%
2008 $25,388,195 -12.19%

Average $15,475,661 36.50%

Table 13. Program Element 0603553N/Surface ASW—Project Unit 1704/Undersea
Warfare RDT&E Costs (FY09$) and Annual Percentage Change

c. Program Element 0604503N/Submarine System Equipment
Development

Trends in the RDT&E costs for Program Element 0604503N/Submarine

System Equipment Development—Project Unit 0219/Sub Sonar Improvement (ENG) for

fiscal years 2000 to 2008 are illustrated in Figure 16. As expected, the costs exhibit an

overall downward trend. Fiscal year 2002 costs also include Project Unit

9070/MPP/SPB/A-RCI Model for Tactical Control Info Mgmt. This project number has

the same R-2a description and justification, but is listed separately. No explanation is

provided for the additional entry and the item is consolidated into Project Unit 0219 in

fiscal year 2003.

Results of calculating the annual percentage change are displayed in Table

14. The table illustrates that there have been large variations in annual funding, but

overall there has been an average decrease of 2.04 percent.

82

Figure 16. Program Element 0604503N/Submarine System Equipment Development—
Project Unit 0219/Sub Sonar Improvement (ENG) RDT&E Costs (FY09$) per

Fiscal Year

Fiscal Year RDT&E Cost (FY09$) Annual Percentage Change

2000 $41,749,968 ------
2001 $49,397,990 18.32%
2002 $57,968,474 17.35%
2003 $57,423,040 -0.94%
2004 $43,385,355 -24.45%
2005 $22,631,783 -47.84%
2006 $32,389,186 43.11%
2007 $22,497,813 -30.54%
2008 $24,439,170 8.63%

Average $39,098,086 -2.04%

Table 14. Program Element 0604503N/Submarine System Equipment
Development—Project Unit 0219/Sub Sonar Improvement (ENG) RDT&E Costs

(FY09$) and Annual Percentage Change

83

d. Program Element 0604562N/Submarine Tactical Warfare
System—Project Unit 0236/SSN Comb Cont Sys Imprvmnt
(ENG)

Trends in the RDT&E costs for Program Element 0604503N/Submarine

System Equipment Development—Project Unit 0219/Sub Sonar Improvement (ENG) for

fiscal years 2000 to 2008 are illustrated in Figure 17. For fiscal year 2002, there was no

breakdown of costs available in Exhibit R-3, so 65 percent of the total cost of the

program was used. This corresponds to the average percentage of software related costs

for the program between fiscal years 2004 and 2008. Although the overall trend is

upward, it is difficult to draw any conclusions due to the spread of the data. From fiscal

years 2001 to 2006 there is a slight downward linear trend. In fiscal year 2007, the costs

increase by 48.46 percent and then begin to slope downward again. Overall it seems that

the upward trend is driven by the increases from fiscal years 2000 to 2001 and fiscal

years 2006 to 2007.

Results of calculating the annual percentage change, displayed in Table

15, also illustrate this inconsistency. There are large annual variations and the overall

average indicates a 36.62 percent increase. However, removing the largest increase,

258.66 percent from fiscal years 2000 to 2001 lowers the average to 4.90 percent.

Figure 17. Program Element 0604562N/Submarine Tactical Warfare System—Project
Unit 0236/SSN Comb Cont Sys Imprvmnt (ENG) RDT&E Costs (FY09$) per

Fiscal Year

84

Fiscal Year RDT&E Cost (FY09$) Annual Percentage Change

2000 $8,167,484 ------
2001 $29,293,638 258.66%
2002 $27,876,487 -4.84%
2003 $26,383,902 -5.35%
2004 $23,255,003 -11.86%
2005 $27,187,853 16.91%
2006 $25,855,630 -4.90%
2007 $38,385,042 48.46%
2008 $36,805,930 -4.11%

Average $27,023,441 36.62%

Table 15. Program Element 0604562N/Submarine Tactical Warfare System—
Project Unit 0236/SSN Comb Cont Sys Imprvmnt (ENG) RDT&E Costs (FY09$)

and Annual Percentage Change

e. Program Element 0604261N/Acoustic Search Sensors—Project
Unit 0480/ASW Sensors & Processors

Trends in the RDT&E costs for Program Element 0604261N/Acoustic

Search Sensors—Project Unit 0480/ASW Sensors & Processors for fiscal years 2000 to

2008 are illustrated in Figure 18. As expected, the data exhibit a downward linear trend.

The trend is consistent with the exception of fiscal years 2006 to 2008. The large increase

in fiscal year 2008 is due to starting a new program. Exhibit R-2a explains that the

purpose of the program is to “develop a coherent source that will satisfy the search and

localization requirement in the harsh, shallow water littorals” (DoN FM&C, 2007).

Results of calculating the annual percentage change are displayed in Table

16. Although there is large variation in the annual percentages, the average is a 2.33

percent decrease.

85

Figure 18. Program Element 0604261N/Acoustic Search Sensors—Project Unit
0480/ASW Sensors & Processors RDT&E Costs (FY09$) per Fiscal Year

Fiscal Year RDT&E Cost (FY09$) Annual Percentage Change
2000 $29,639,272 ------
2001 $22,347,046 -24.60%
2002 $18,811,170 -15.82%
2003 $15,360,894 -18.34%
2004 $15,094,936 -1.73%
2005 $12,909,966 -14.47%
2006 $18,033,723 39.69%
2007 $8,639,493 -52.09%
2008 $14,578,445 68.74%

Average $17,268,327 -2.33%

Table 16. Program Element 0604261N/Acoustic Search Sensors—Project Unit
0480/ASW Sensors & Processors RDT&E Costs (FY09$) and Annual Percentage

Change

86

f. Program Element 0205620N/Surface ASW Combat System
Integration and Program Element 0205620N/Surface ASW
System Improvement

Trends in the RDT&E costs for Program Element 0205620N/Surface

ASW Combat System Integration—Project Unit 0896/AN/SQQ-89 Modification and

Program Element 0205620N/Surface ASW Combat System Integration—Project Unit

1916/Surface ASW System Improvement for fiscal years 2000 to 2008 are illustrated in

Figure 19. As expected, the data exhibit a downward linear trend. In this case, the data

illustrate a well-behaved linear trend with the exception of fiscal years 2000 and 2003.

The large increase in fiscal year 2003 is attributed to a congressional add of $11.6 million

(DoN FM&C, 2003). This again illustrates how funding can be influenced by factors

other than process improvements.

Results of calculating the annual percentage change are displayed in Table

17. These results again illustrate a wide range of annual funding changes. Overall, the

average is a 0.48 percent increase. Removing the 87.02 percent increase from fiscal year

2000 to fiscal year 2001 drops the average to an 11.89 percent decrease, which is more

consistent with the trend identified in Figure 13.

Figure 19. Program Element 0205620N/Surface ASW Combat System Integration—
Project Unit 0896/AN/SQQ–89 Modification and Budget Activity (BA)—7 and
Program Element 0205620N/Surface ASW Combat System Integration—Project
Unit 1916/Surface ASW System Improvement RDT&E Costs (FY09$) per Fiscal

Year

87

Fiscal Year RDT&E Cost (FY09$) Annual Percentage Change

2000 $18,850,156 ------
2001 $35,253,398 87.02%
2002 $32,388,080 -8.13%
2003 $41,619,010 28.50%
2004 $25,566,249 -38.57%
2005 $20,869,882 -18.37%
2006 $13,221,884 -36.65%
2007 $15,824,865 19.69%
2008 $11,127,445 -29.68%

Average $23,857,885 0.48%

Table 17. Program Element 0205620N/Surface ASW Combat System Integration—
Project Unit 0896/AN/SQQ–89 Modification and Budget Activity (BA)—7 and
Program Element 0205620N/Surface ASW Combat System Integration—Project

Unit 1916/Surface ASW System Improvement RDT&E Costs (FY09$) and
Annual Percentage Change

g. Total Software Related Costs for the Selected Programs

Trends in the total RDT&E costs for the above programs are illustrated in

Figure 20. As expected, the costs exhibit an overall downward trend.

Results of calculating the annual percentage change are displayed in Table

18. These results illustrate a wide range of annual funding changes. Overall, the average

is a 0.96 percent decrease. This is consistent with the trend identified.

88

Figure 20. Total Software Related RDT&E Costs (FY09$) per Fiscal Year

Fiscal Year RDT&E Cost (FY09$) Annual Percentage Change

2000 $198,109,028 ------
2001 $223,929,803 13.03%
2002 $211,901,944 -5.37%
2003 $224,564,938 5.98%
2004 $149,575,961 -33.39%
2005 $150,523,089 0.63%
2006 $182,143,271 21.01%
2007 $171,104,989 -6.06%
2008 $165,107,005 -3.51%

Average $186,328,892 -0.96%

Table 18. Total Software Related RDT&E Costs (FY09$) per Fiscal Year

2. Total ASW Sonar and Fire Control Related RDT&E Costs

Table 19 illustrates the total fiscal years 2008 and 2009 funding for ASW sonar

and fire control related RDT&E. The costs displayed do not differentiate between

software and hardware costs. Total RDT&E costs for sonar and fire control related

systems in the Department of the Navy budget for fiscal years 2008 and 2009 are

$597,457,420 and $624,577,000, respectively. Although the fiscal year 2009 figure

89

accounts for only 3.23 percent of the total $19,337,238,000 RDT&E funding available for

obligation until September 30, 2010, it is still a significant amount.

Budget
Activity

Program
Element Project Title

Fiscal Year
2008 Costs

Fiscal Year
 2009 Costs

2 0602747N
Undersea Warfare Applied

Research $72,840,460 $58,658,000

3 0603747N
Undersea Warfare

Advanced Technology $76,553,330 $81,490,000

4 0603561N
Sub Combat System
Improvement (ADV) $52,767,820 $47,135,000

4 0603561N Undersea Superiority $0 $36,933,000
4 0603553N Surface ASW $47,172,125 $29,574,000

4 0603581N
LCS Mission Package
Development (ASW) $21,010,500 $9,731,000

5 0603254N ADV ASW Sensors & Proc $3,265,255 $10,320,000

5 0603506N
Surface Ship Torpedo

Defense (SSTD) $27,862,765 $49,171,000
5 0604221N P-3 Sensor Integration $3,124,170 $1,460,000
5 0604518N USW Decision Support $17,027,640 $14,792,000

5 0604558N
New Design SSN Combat

Sys Dev $35,119,000 $28,820,000

5 0604558N
Submarine Multi-Mission

Team Trainer $6,385,365 $2,786,000
5 0604261N ASW Sensors & Processors $18,937,870 $18,325,000

5 0604503N
Sub Sonar Improvement

(ENG) $61,682,565 $67,894,000

5 0604562N
SSN Comb Cont Sys

Imprvmnt (ENG) $56,563,920 $58,592,000

5 0604610N
Lightweight Hybrid

Torpedo $26,899,530 $50,732,000

7 0205620N
Surface ASW System

Improvement $18,388,755 $21,720,000

7 0204311N
IUSS Detect/Classify

System $31,605,070 $20,565,000
7 0205632N MK 48 ADCAP $20,251,280 $15,879,000

 Total $597,457,420 $624,577,000

Table 19. Total ASW Sonar and Fire Control Related RDT&E Costs (FY09$)

90

3. Summary

Overall, RDT&E software costs related to ASW sonar and fire control systems

exhibit a downward trend, even as the cost of labor, the primary cost driver for software

development, has increased. However, only two of the programs analyzed illustrated a

well-behaved downward linear pattern. Two of the other programs showed costs

generally moving downward, but extremes in each direction make it difficult to come to a

definitive conclusion. The final two programs analyzed actually showed costs moving in

the upward direction. These programs were also not indicative of a well-defined linear

trend.

The overall downward trend does indicate the potential of software reuse cost

savings. However, the actual amount of these reductions that can be attributed to software

reuse is inconclusive. Specific empirical data regarding reuse within each of the programs

were not available, so any conclusion concerning direct cost avoidance from software

reuse is speculation.

In addition, the analysis highlighted other potential events that can significantly

affect the funding for each program identified. These included congressional additions

and reprogrammings. These two examples are also not all-inclusive, but illustrate some of

the outside effects that can influence a program’s funding. This is important to note when

analyzing programs that rely on incremental development. Events independent of the

actions within the program can significantly affect annual funding. An over reliance on

consistent annual funding to provide basic system capabilities could be problematic.

Calculating the total annual RDT&E costs for sonar- and fire-control related

systems for fiscal years 2008 and 2009 illustrates how much money is potentially

available within an Anti-Submarine Warfare (ASW) Community of Interest (COI).

Making a judgment as to whether this is sufficient funding to validate the existence of

such a COI is not the intent of this research. However, there does seem to be a sufficient

number of efforts underway to justify future investment to facilitate collaboration.

91

V. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

A. SUMMARY OF RESULTS

This research analyzed the costs associated with development and support of anti-

submarine warfare software to determine the cost-effectiveness of software reuse. The

following six program elements were selected from the Department of the Navy’s

Research, Development, Test and Evaluation (RDT&E) budget in order to analyze trends

in software development costs.

 Budget Activity (BA)– 4, Program Element 0603561N/Advanced
Submarine System Development—Project Unit 0223/Sub Combat System
Improvement (ADV)

 Budget Activity (BA)—4, Program Element 0603553N/Surface ASW—
Project Unit 1704/Undersea Warfare

 Budget Activity (BA)—5, Program Element 0604503N/Submarine
System Equipment Development—Project Unit 0219/Sub Sonar
Improvement (ENG)

 Budget Activity (BA)—5, Program Element 0604562N/Submarine
Tactical Warfare System—Project Unit 0236/SSN Comb Cont Sys
Imprvmnt (ENG)

 Budget Activity (BA)—5, Program Element 0604261N/Acoustic Search
Sensors—Project Unit 0480/ASW Sensors & Processors

 Budget Activity (BA)—7, Program Element 0205620N/Surface ASW
Combat System Integration—Project Unit 0896/AN/SQQ-89 Modification
and Budget Activity (BA)—7, Program Element 0205620N/Surface ASW
Combat System Integration—Project Unit 1916/Surface ASW System
Improvement

Four of the six programs exhibited downward trends in annual funding and two

exhibited an upward trend. Within the four programs, only two exhibited a well-behaved

downward linear trend in costs.

Software related support costs were analyzed for three specific anti-submarine

warfare systems, AN/BQQ-10 sonar system, the AN/SQQ-89 surface combat system and

the AN/BYG-1 combat control system. The two types of costs selected for analysis were

92

software related maintenance costs and training costs. Within those two categories, costs

were further divided into maintenance costs per unit in service, training costs per unit in

service, and training costs per individual trained.

Results from the analysis of software related maintenance costs exhibited a clear

downward trend for all three systems. In each case it appears that the cost associated with

maintaining systems is decreasing on a per unit basis.

The results obtained from the analysis of training costs are less consistent. The

AN/BQQ–10 exhibited upward trends in both training costs per unit and per individual

trained. The AN/SQQ–89 and AN/BYG–1 exhibited downward trends for both costs per

unit and costs per individual trained. The shape of the graphs was not consistent in either

case. The AN/SQQ–89 appears to have an exponential decrease for costs per individual

trained, while the AN/BYG–1 exhibits a similar shape for costs per unit in service. In all

cases, the costs per individual trained seemed to decrease as the number of trainees

increased.

In addition to analyzing the costs of specific programs and systems, an analysis of

software development labor costs was conducted. Labor is the primary cost driver in

software development. Any trends in the costs associated with labor may also have

significant influence on the cost of software development and maintenance. The national

mean hourly wages for three software related occupations were analyzed from 1999 to

2007. The wages associated with each occupation were not consistent and fluctuated in

both the upward and downward direction. Despite the year-to-year variations, they have

increased from their 1999 levels.

Ultimately, the analysis and results do not support or refute whether reuse occurs

and whether cost avoidance has been achieved. The data gathered and analyzed simply

illustrate trends in the costs of systems and programs associated with the reuse of ASW

software. Further, the upward trend in the cost of labor associated with software

development illustrates that any downward trends in costs are influenced by other factors.

Although the extent and specific levels of reuse across the programs were not determined,

93

the downward trends exhibited may represent cost savings that can be attributed to reuse.

However, the data analyzed are not indicative of direct savings from software reuse.

B. CONCLUSIONS

Software reuse may be successful in reducing the costs associated with the

programs selected for analysis. Even as the cost of labor, the primary cost driver in

software development and support, has increased, the costs associated with developing

and maintaining anti-submarine warfare software have shown indications of reduction.

Although specific empirical data concerning the savings from ASW software reuse was

not available, some of the costs that were analyzed exhibited downward trends. However,

trends in either direction could not be directly correlated to software reuse.

Any direct conclusions associated with software reuse are also complicated by the

number of factors that can affect funding within the Department of Defense. During the

course of the research, examples such as reprogramming of funds and congressional

additions were found to have significant effects on annual funding. Therefore drawing

meaningful relationships between the funding for two programs is difficult due to the

influence of factors other than product development.

Also, it was not possible to consider in this research the specific capabilities that

were developed. The only caveat for analysis was a relationship to the anti-submarine

warfare mission. Although specific capabilities may have been a factor in the funding,

they were not a factor in the analysis. This research indicates that the Navy does seem to

be achieving some cost reductions related to ASW software maintenance and RDT&E.

Although the reductions could be indicative of process improvements, they may also be

caused by changes in priorities or an inability to provide adequate desired levels of

funding.

Clements et al., (2006) state that “PEO IWS has been very successful in achieving

software reuse at a level that may be unparalleled in the Navy” (p. 39). As of 2005, reuse

of ASW software assets has been credited with saving the development of 4.5 million

lines of code at an approximate cost avoidance of $500 million (Clements et al., 2006, p.

94

29). However, there does not seem to be a mechanism currently in place to track the

actual cost savings obtained from reuse. Contractor experience is a factor in the

acquisition process. This implies that reuse is a consideration in awarding contracts, but

does not provide an indication of actual reuse levels.

The practice of reusing software is discussed throughout the literature, but there is

a lack of consensus on the most effective methods available to take advantage of it. Large

scale acquisition of complex systems makes a definitive answer on how to best achieve

cost savings through software reuse even more difficult. Contributing to this difficulty is

the continued evolution of the practice. For example, no specific programming language

is used universally.

Although the focus of this research was on the benefits of reuse, there can also be

instances when reuse becomes more expensive. Software programming languages are

continually evolving and overreliance on past efforts can lead to exclusion of the benefits

of new developments and advances in technology. As the process of software

development evolves and matures, it is important that the acquisition community does not

fixate on a single solution. Collaboration between organizations such as Communities of

Interest may help alleviate some issues associated with software reuse, but their success

still depends on active participation by all members.

Finally, concerns continue to exist over intellectual property (Clements et al.,

2006, p. 31). The Navy and the Department of Defense should align their goals for

software acquisition with a strategy that allows contractors to continually benefit from

intellectual work. Policy and definitions must address both the concerns of the Navy and

its contractors. Concerns over intellectual property should be addressed to ensure that the

Navy continues to attract a variety of businesses and solutions for new combat systems.

C. RECOMMENDATIONS

One of the issues mentioned in GAO (1993) regarding software reuse is the

establishment of metrics. The report defines software metrics as “quantifiable measures

that are used to assess the products and processes of software development” (p. 10).

Future research should focus on defining metrics that illustrate cost avoidance or cost

savings for the Navy.

95

There are numerous initiatives such as software repositories within the

Department of Defense and Navy that focus on facilitating the reuse of software assets.

Most of these require additional funding to maintain operations. There should be some

mechanism in place to evaluate the performance of programs using a cost-benefit

analysis. Current metrics seem to be focused on whether software assets are made

available for reuse and not whether they result in cost savings while achieving mission

requirements.

This research identified several programs that have illustrated cost reductions.

Further research should investigate whether the reductions in costs have resulted in a

corresponding reduction in capabilities. If costs are being reduced along with system

capability, then it would be inaccurate to classify savings as cost avoidance. Future

research should focus on a more limited number of programs. This could facilitate more

meaningful analysis of the specific origin of the reduced costs.

Analysis of training costs on a per unit basis is not a valuable source of

information during periods of transition to a common system. Any future analysis should

focus on total fixed costs of operating training centers. If savings are being achieved, then

the fixed costs should decrease. Analyzing costs on a per unit basis during periods of

transition may only be a reflection of reallocating existing costs. Although the overall

costs may not be changing, they may appear to rise due to the allocation of existing

training courses to the new systems.

Future research should focus on more specific empirical data related to software

reuse. The costs that were available for this research were too general to provide specific

data related to cost avoidance from software reuse. If there is a necessity or desire to

analyze the actual cost avoidance due to software reuse, additional measures should be

taken. There is currently no central location for specific data related to ASW software

reuse. Some efforts, such as Software Resource Data Reports for ACAT I and ACAT IA

programs, incorporate information on software reuse and may provide valuable data for

future analysis, but the current scope of these data is limited.

96

THIS PAGE INTENTIONALLY LEFT BLANK

97

LIST OF REFERENCES

ASSET. (2006, August 25). Submarine Sonar Cost Analysis Report (Rev. 10)
[PowerPoint slides].

American Society of Military Comptrollers. (2008, October). Enhanced Defense
Financial Management Training Course. Arlington, VA.

Benedict, J. (2005). The Unraveling and Revitalization of U.S. Navy Antisubmarine
Warfare. Naval War College Review, 58(2), 92-120.

Bergey, J., Fisher, M., Gallagher, B., Jones, L., and Northrop, L. (2000, February). Basic
Concepts of Product Line Practice for the DoD. Pittsburgh, PA: Carnegie Mellon
Software Engineering Institute.

Boehm, B., Abts, C., Brown, A., Chulani, S., Clark, B., Horowitz, E., et al., (2000).
Software Cost Estimation with COCOMO II. Upper Saddle River, NJ: Prentice
Hall PTR.

Boudreau, M. (2006, October 30). Acoustic Rapid COTS Insertion: A Case Study in
Spiral Development. Monterey, CA: Naval Postgraduate School.

Bureau of Labor Statistics. Occupational Employment Statistics [Data File]. Available
from http://www.bls.gov/OES/.

Clements, P.C., Cohen, S.G., and Bergey, J.K. (2006, December). U.S. Navy ASW Sonar
System Software and the Advanced Processing Build. Pittsburgh, PA: Carnegie
Mellon Software Engineering Institute.

Cohen, S. (2001, April). Case Study: Building and Communicating a Business Case for a
DoD Product Line. Retrieved May 12, 2009 from
http://www.sei.cmu.edu/productlines/.

Cohen, S. (2003, July). Predicting When Product Line Investment Pays. Retrieved May
12, 2009, from http://www.sei.cmu.edu/productlines/.

Cohen, S., Dunn, E., and Soule A. (2002, September). Successful Product Line
Development and Sustainment: A DoD Case Study. Retrieved May 12, 2009, from
http://www.sei.cmu.edu/productlines/.

Congressional Budget Office. (2009, March). A Preliminary Analysis of the President’s
Budget and an Update of CBO’s Budget and Economic Outlook. Retrieved May
4, 2009, from. http://www.cbo.gov/ftpdocs/100xx/doc10014/toc.htm.

98

Cummings, C., Gallo, M., Johnson, P., Marsh-Jones, B., and von Kuegelgen, J. (1998,
February). Software Development Estimating Handbook, Phase One. Washington,
D.C.: Naval Center for Cost Analysis.

Department of Defense. (n.d). The Open Systems Joint Task Force. Retrieved November
10, 2008, from http://www.acq.osd.mil/osjtf/overview.html.

Department of Defense. (2009, May 1). Financial Management Regulation (FMR)
7000.14-R. Washington, D.C.

Department of Defense Chief Information Officer. (2007, May). Communities of Interest
in the Net-Centric DoD: Frequently Asked Questions (FAQ) (Version 1.1).
Washington, D.C.

Department of the Navy Financial Management & Comptroller. Department of the Navy
Budget Materials [Data File]. Available from
http://www.finance.hq.navy.mil/FMC/.

Department of the Navy Financial Management & Comptroller. (2003, February).
Department of the Navy Fiscal Year (FY) 2004/2005 Biennial Budget Estimates:
Research, Development, Test & Evaluation, Navy. Retrieved May 26, 2009, from
http://www.finance.hq.navy.mil/FMC/.

Department of the Navy Financial Management & Comptroller. (2007, February).
Department of the Navy Fiscal Year (FY) 2008/2009 Budget Estimates: Research,
Development, Test & Evaluation, Navy. Retrieved May 26, 2009, from
http://www.finance.hq.navy.mil/FMC/.

Department of the Navy Financial Management & Comptroller. (2008, February).
Department of the Navy Fiscal Year (FY) 2009 Budget Estimates: Research,
Development, Test & Evaluation, Navy. Retrieved May 26, 2009, from
http://www.finance.hq.navy.mil/FMC/.

Government Accountability Office. (2008, September 25). Defense Acquisitions:
Fundamental Changes are Needed to Improve Weapon Program Outcomes.
Washington, D.C.

Government Accountability Office. (2004, March). Defense Acquisitions: Stronger
Management Practices are Needed to Improve DOD’s software Intensive Weapon
Acquisitions. Washington, D.C.

Government Accountability Office. (1993, January 28). Software Reuse: Major Issues
Need to Be Resolved Before Benefits Can Be Achieved. Washington, D.C.

99

Government Accountability Office. (1989, March). Submarine Combat System:
Technical Challenges Confronting Navy’s AN/BSY-2 Development. Washington,
D.C.

Haefliger, S., von Krogh, G., and Spaeth, S. (2008, January). Code Reuse in Open Source
Software. Management Science, 54(1), 180-193.

Held, T., Newsome, B., and Lewis, M. (2008). Commonality in Military Equipment: A
Framework to Improve Acquisition Decisions. Arlington, VA: RAND
Corporation.

Johnson, W. (2004). The A-RCI Process—Leadership and Management Principles. Naval
Engineers Journal, 116, 99-105.

Karlsson, E-A. (1995). Software Reuse: A Holistic Approach. New York: John Wiley &
Sons.

Lockheed Martin. (2003). USS Virginia Class C3I System. Retrieved December 17,
2008, from http://www.lockheedmartin.com/data/assets/1082.pdf

Mili, H., Mili, A., Yacoub, S., and Addy, E. (2002) Reuse-Based Software Engineering
Techniques, Organization, and Controls. New York: John Wiley & Sons.

Naval Center for Cost Analysis. Navy Visibility and Maintenance of Operating and
Support Costs (VAMOSC) [Data file]. Available from
http://www.navyvamosc.com/.

Naval Center for Cost Analysis. (2009, February 27). Naval Visibility and Maintenance
of Operating and Support Costs (VAMOSC) 8.0: Shipboard Systems User
Manual. Retrieved May 26, 2009, from http://www.navyvamosc.com/.

Naval Center for Cost Analysis. (2009a, April 30). FY 94-08 Ships, Shipboard Systems,
and Military Sealift Command Anomalies. Retrieved May 26, 2009, from
http://www.navyvamosc.com/.

Naval Meteorological and Oceanographic Command. (2009, February). Navy Standard
Oceanographic and Atmospheric Master Library (OAML) [Powerpoint Slides].

Naval Sea Systems Command PMS 4252. (1999, January 8). Acoustic Program Plan
(Revision 8). Arlington, VA.

Nazareth, D. and Rothenberger, M. (2004, October). Assessing the Cost-Effectiveness of
Software Reuse: A Model for Planned Reuse. The Journal of Systems and
Software, 73(2), 245-255.

100

Nelson, E. (2008, September 30). Open Architecture Technical Principles and Guidelines
1.5.8. Retrieved November 9, 2008, from
https://acc.dau.mil/CommunityBrowser.aspx?id=170302&lang=en-US

Open Systems Joint Task Force. (2004, September). Program Manager’s Guide: A
Modular Open Systems Approach (MOSA) to Acquisition, Version 2.0.
Washington, D.C.

Prieto-Diaz, R. and Freeman, P. (1987, January/February) Classifying Software for
Reusability. IEEE Software, 4(1), 6-16.

Program Executive Office—Integrated Warfare Systems. (2007, June 21). Charter for the
Anti-Submarine Warfare (ASW) Community of Interest (COI). Washington, D.C.

Program Executive Office—Integrated Warfare Systems 5A. (2003, July 11).APB
Process Operating Instruction. Washington, D.C.

Program Executive Office—Integrated Warfare Systems 5. (2009, January 29).
Management of the Advanced Development Process for Submarine Combat
Systems. Washington, D.C.

Program Executive Office—Integrated Warfare Systems 7. (2007, October 25). Naval
Open Architecture Contract Guidebook, Version 1.1. Washington, D.C.

Poulin, J.S., Caruso, J., and Hancock, D. (1993). The Business Case for Software Reuse.
IBM Systems Journal, 32(4), 567-594.

Rothenberger, M., Dooley, K., Kulkarni, U., and Nada, N. (2003, September). Strategies
for Software Reuse: A Principal Component Analysis of Reuse Practices. IEEE
Transactions on Software Engineering, 29(9), 825-837.

Schade, O. (2009). 99 Bottles of Beer. Retrieved May 19, 2009 from http://99-bottles-of-
beer.net/.

Software Engineering Institute. (2009). Software Product Lines. Retrieved May 5, 2009,
from http://www.sei.cmu.edu/productlines/.

Software Resource Data Report. (2005, October 25). In Defense Acquisition Guidebook
online. Retrieved May 22, 2009 from
https://akss.dau.mil/dag/DoD5000.asp?view=document.

101

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Joseph G. San Miguel
Naval Postgraduate School
Monterey, California

4. Michael W. Boudreau
Naval Postgraduate School
Monterey, California

5. RADM Steven Johnson
Director, Strategic Systems Programs
Arlington, Virginia

6. CAPT Charles Davis
Program Executive Office Integrated Warfare Systems 5
Washington Navy Yard, Washington DC

